Thermodynamically-consistent derivation and computation of twinning and fracture in brittle materials by means of phase-field approaches in the finite element method

被引:16
|
作者
Amirian, Benhour [1 ]
Jafarzadeh, Hossein [2 ,3 ]
Abali, Bilen Emek [4 ]
Reali, Alessandro [2 ]
Hogan, James David [1 ]
机构
[1] Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2R3, Canada
[2] Univ Pavia, Dept Civil Engn & Architecture, I-27100 Pavia, Italy
[3] Ruhr Univ Bochum, Interdisciplinary Ctr Adv Mat Simulat ICAMS, D-44801 Bochum, Germany
[4] Uppsala Univ, Dept Mat Sci & Engn, S-75121 Uppsala, Sweden
基金
加拿大自然科学与工程研究理事会;
关键词
Anisotropic brittle materials; Finite element method; Fracture mechanics; Phase-field method; Twinning; CRYSTAL PLASTICITY; CRACK-PROPAGATION; ELASTIC-CONSTANTS; VARIATIONAL APPROACH; GRADIENT DAMAGE; STRAIN-ENERGY; MODEL; DEFORMATION; TRANSFORMATIONS; SIMULATION;
D O I
10.1016/j.ijsolstr.2022.111789
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A theoretical-computational framework is proposed for predicting the failure behavior of two anisotropic brittle materials, namely, single crystal magnesium and boron carbide. Constitutive equations are derived, in both small and large deformations, by using thermodynamics in order to establish a fully coupled and transient twin and crack system. To study the common deformation mechanisms (e.g., twinning and fracture), which can be caused by extreme mechanical loading, a monolithically-solved Ginzburg-Landau-based phase-field theory coupled with the mechanical equilibrium equation is implemented in a finite element simulation framework for the following problems: (i) twin evolution in two-dimensional single crystal magnesium and boron carbide under simple shear deformation; (ii) crack-induced twinning for magnesium under pure mode I and mode II loading; and (iii) study of fracture in homogeneous single crystal boron carbide under biaxial compressive loading. The results are verified by a steady-state phase-field approach and validated by available experimental data in the literature. The success of this computational method relies on using two distinct phase-field (order) parameters related to fracture and twinning. A finite element method-based code is developed within the Python-based open-source platform FEniCS. We make the code publicly available and the developed algorithm may be extended for the study of phase transformations under dynamic loading or thermally-activated mechanisms, where the competition between various deformation mechanisms is accounted for within the current comprehensive modeling approach.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Thermodynamically-consistent derivation and computation of twinning and fracture in brittle materials by means of phase-field approaches in the finite element method
    Amirian, Benhour
    Jafarzadeh, Hossein
    Abali, Bilen Emek
    Reali, Alessandro
    Hogan, James David
    International Journal of Solids and Structures, 2022, 252
  • [2] THERMODYNAMICALLY-CONSISTENT PHASE-FIELD MODELS FOR SOLIDIFICATION
    WANG, SL
    SEKERKA, RF
    WHEELER, AA
    MURRAY, BT
    CORIELL, SR
    BRAUN, RJ
    MCFADDEN, GB
    PHYSICA D-NONLINEAR PHENOMENA, 1993, 69 (1-2) : 189 - 200
  • [3] FINITE ELEMENT PHASE-FIELD MODELLING OF BRITTLE FRACTURE
    Santos, Hugo A. F. A.
    Silberschmidt, Vadim V.
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 231 - 236
  • [4] Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture
    Hesch, C.
    Weinberg, K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 99 (12) : 906 - 924
  • [5] Adaptive consistent element-free Galerkin method for phase-field model of brittle fracture
    Yulong Shao
    Qinglin Duan
    Shasha Qiu
    Computational Mechanics, 2019, 64 : 741 - 767
  • [6] Adaptive consistent element-free Galerkin method for phase-field model of brittle fracture
    Shao, Yulong
    Duan, Qinglin
    Qiu, Shasha
    COMPUTATIONAL MECHANICS, 2019, 64 (03) : 741 - 767
  • [7] A thermodynamically consistent phase-field model for frictional fracture in rocks
    Liu, Sijia
    Wang, Yunteng
    INTERNATIONAL JOURNAL OF PLASTICITY, 2025, 185
  • [8] Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method
    Hirshikesh
    Pramod, A. L. N.
    Annabattula, R. K.
    Ooi, E. T.
    Song, C.
    Natarajan, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 355 : 284 - 307
  • [9] A thermodynamically consistent machine learning-based finite element solver for phase-field approach
    Amirian, Benhour
    Inal, Kaan
    ACTA MATERIALIA, 2024, 277
  • [10] A hybrid adaptive finite element phase-field method for quasi-static and dynamic brittle fracture
    Tian, Fucheng
    Tang, Xiaoliang
    Xu, Tingyu
    Yang, Junsheng
    Li, Liangbin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 120 (09) : 1108 - 1125