Predicting the stability of ternary intermetallics with density functional theory and machine learning

被引:32
|
作者
Schmidt, Jonathan [1 ]
Chen, Liming [2 ]
Botti, Silvana [3 ,4 ]
Marques, Miguel A. L. [1 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany
[2] Univ Lyon, Ecole Cent Lyon, Liris Lab, CNRS,UMR 5205, 36 Ave Guy Collongue, F-69134 Ecully, France
[3] Friedrich Schiller Univ Jena, Inst Festkorpertheorie & Opt, Max Wien Pl 1, D-07743 Jena, Germany
[4] European Theoret Spect Facil, Max Wien Pl 1, D-07743 Jena, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2018年 / 148卷 / 24期
关键词
TOTAL-ENERGY CALCULATIONS; HIGH-THROUGHPUT; CRYSTAL-STRUCTURE; DISCOVERY;
D O I
10.1063/1.5020223
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use a combination of machine learning techniques and high-throughput density-functional theory calculations to explore ternary compounds with the AB(2)C(2) composition. We chose the two most common intermetallic prototypes for this composition, namely, the tI10-CeAl2Ga2 and the tP10-FeMo2B2 structures. Our results suggest that there may be similar to 10 times more stable compounds in these phases than previously known. These are mostly metallic and non-magnetic. While the use of machine learning reduces the overall calculation cost by around 75%, some limitations of its predictive power still exist, in particular, for compounds involving the second-row of the periodic table or magnetic elements. Published by AIP Publishing.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] Predicting the Thermodynamic Stability of Solids Combining Density Functional Theory and Machine Learning
    Schmidt, Jonathan
    Shi, Jingmin
    Borlido, Pedro
    Chen, Liming
    Botti, Silvana
    Marques, Miguel A. L.
    CHEMISTRY OF MATERIALS, 2017, 29 (12) : 5090 - 5103
  • [2] Machine learning and density functional theory
    Ryan Pederson
    Bhupalee Kalita
    Kieron Burke
    Nature Reviews Physics, 2022, 4 : 357 - 358
  • [3] Machine learning and density functional theory
    Pederson, Ryan
    Kalita, Bhupalee
    Burke, Kieron
    NATURE REVIEWS PHYSICS, 2022, 4 (06) : 357 - 358
  • [4] Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach
    Willhelm, Daniel
    Wilson, Nathan
    Arroyave, Raymundo
    Qian, Xiaoning
    Cagin, Tahir
    Pachter, Ruth
    Qian, Xiaofeng
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (22) : 25907 - 25919
  • [5] Finding Nature's Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory
    Hautier, Geoffroy
    Fischer, Christopher C.
    Jain, Anubhav
    Mueller, Tim
    Ceder, Gerbrand
    CHEMISTRY OF MATERIALS, 2010, 22 (12) : 3762 - 3767
  • [6] Machine learning density functional theory for the Hubbard model
    Nelson, James
    Tiwari, Rajarshi
    Sanvito, Stefano
    PHYSICAL REVIEW B, 2019, 99 (07)
  • [7] Predicting phosphirane air stability using density functional theory
    Gaston, Jayden J.
    McCosker, Patrick M.
    Yu, Haibo
    Keller, Paul A.
    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 2020, 33 (10)
  • [8] Machine learning the derivative discontinuity of density-functional theory
    Gedeon, Johannes
    Schmidt, Jonathan
    Hodgson, Matthew J. P.
    Wetherell, Jack
    Benavides-Riveros, Carlos L.
    Marques, Miguel A. L.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (01):
  • [9] Density functional theory and material databases in the era of machine learning
    Kashyap, Arti
    Applied Physics Letters, 2024, 125 (22)
  • [10] Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory
    Vukovic, Sinisa
    Hay, Benjamin P.
    Bryantsev, Vyacheslav S.
    INORGANIC CHEMISTRY, 2015, 54 (08) : 3995 - 4001