Deep Learning-Aided SCMA

被引:147
|
作者
Kim, Minhoe [1 ]
Kim, Nam-I [1 ]
Lee, Woongsup [2 ]
Cho, Dong-Ho [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
[2] Gyeongsang Natl Univ, Inst Marine Ind, Dept Informat & Commun Engn, Tongyeong 53064, South Korea
基金
新加坡国家研究基金会;
关键词
Sparse code multiple access (SCMA); deep neural network (DNN); autoencoder; deep learning;
D O I
10.1109/LCOMM.2018.2792019
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Sparse code multiple access (SCMA) is a promising code-based non-orthogonal multiple-access technique that can provide improved spectral efficiency and massive connectivity meeting the requirements of 5G wireless communication systems. We propose a deep learning-aided SCMA (D-SCMA) in which the codebook that minimizes the bit error rate (BER) is adaptively constructed, and a decoding strategy is learned using a deep neural network-based encoder and decoder. One benefit of D-SCMA is that the construction of an efficient codebook can be achieved in an automated manner, which is generally difficult due to the non-orthogonality and multi-dimensional traits of SCMA. We use simulations to show that our proposed scheme provides a lower BER with a smaller computation time than conventional schemes.
引用
收藏
页码:720 / 723
页数:4
相关论文
共 50 条
  • [1] A Residual Learning-Aided Convolutional Autoencoder for SCMA
    Jiang, Fang
    Chang, Da-Wei
    Ma, Song
    Hu, Yan-Jun
    Xu, Yao-Hua
    [J]. IEEE COMMUNICATIONS LETTERS, 2023, 27 (05) : 1337 - 1341
  • [2] Deep Learning-Aided Multicarrier Systems
    Luong, Thien Van
    Ko, Youngwook
    Matthaiou, Michail
    Vien, Ngo Anh
    Le, Minh-Tuan
    Ngo, Vu-Duc
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (03) : 2109 - 2119
  • [3] More Insight on Deep Learning-Aided Cryptanalysis
    Bao, Zhenzhen
    Lu, Jinyu
    Yao, Yiran
    Zhang, Liu
    [J]. ADVANCES IN CRYPTOLOGY, ASIACRYPT 2023, PT III, 2023, 14440 : 436 - 467
  • [4] Deep Learning-Aided Constellation Design for Downlink NOMA
    Jiang, Lu
    Li, Xiangming
    Ye, Neng
    Wang, Aihua
    [J]. 2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 1879 - 1883
  • [5] Deep Learning-Aided Spatial Multiplexing with Index Modulation
    Turhan, Merve
    Ozturk, Ersin
    Cirpan, Hakan Ali
    [J]. MACHINE LEARNING FOR NETWORKING, MLN 2020, 2021, 12629 : 226 - 236
  • [6] Deep Learning-Aided Channel Allocation Scheme for WLAN
    Lee, Woongsup
    Seo, Jun-Bae
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (06) : 1007 - 1011
  • [7] DLNet: Deep learning-aided massive MIMO decoder
    Kumar, Satish
    Singh, Anurag
    Mahapatra, Rajarshi
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2022, 155
  • [8] Deep Learning-Aided Spatial Discrimination for Multipath Mitigation
    Abdallah, Ali A.
    Kassas, Zaher M.
    [J]. 2020 IEEE/ION POSITION, LOCATION AND NAVIGATION SYMPOSIUM (PLANS), 2020, : 1324 - 1335
  • [9] Deep Learning-Aided Coding for the Fading Broadcast Channel with Feedback
    Li, Siyao
    Tuninetti, Daniela
    Devroye, Natasha
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3874 - 3879
  • [10] Deep learning-aided topology design of metasurfaces for Rayleigh waves
    Zhao, Cheng
    Liu, Chen-Xu
    Yu, Gui-Lan
    [J]. JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2024, 11 (03) : 56 - 71