Hamiltonian theory of constrained impulsive motion

被引:10
|
作者
Cortés, J [1 ]
Vinogradov, AM
机构
[1] Univ Calif Santa Cruz, Baskin Sch Engn, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
[2] Univ Salerno, Dipartimento Matemat & Informat, I-84081 Baronissi, Italy
[3] Ist Nazl Fis Nucl, I-84081 Baronissi, Italy
关键词
D O I
10.1063/1.2192974
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper considers systems subject to nonholonomic constraints which are not uniform on the whole configuration manifold. When the constraints change, the system undergoes a transition in order to comply with the new imposed conditions. Building on previous work on the Hamiltonian theory of impact, we tackle the problem of mathematically describing the classes of transitions that can occur. We propose a comprehensive formulation of the transition principle that encompasses the various impulsive regimes of Hamiltonian systems. Our formulation is based on the partial symplectic formalism, which provides a suitable framework for the dynamics of nonholonomic systems. We pay special attention to mechanical systems and illustrate the results with several examples. (c) 2006 American Institute of Physics.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] The analysis of constrained impulsive motion
    Wang, LS
    Chou, WT
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2003, 70 (04): : 583 - 594
  • [2] The Analysis of Constrained Impulsive Motion
    Wang, L.-S.
    Chou, W.-T.
    Journal of Applied Mechanics, Transactions ASME, 2003, 70 (04): : 583 - 594
  • [3] Constrained motion of Hamiltonian systems
    Udwadia, Firdaus E.
    NONLINEAR DYNAMICS, 2016, 84 (03) : 1135 - 1145
  • [4] Constrained motion of Hamiltonian systems
    Firdaus E. Udwadia
    Nonlinear Dynamics, 2016, 84 : 1135 - 1145
  • [5] Constrained Hamiltonian approach to the Maxwell theory
    Kulyabov, Dmitry S.
    Korolkova, Anna V.
    Gevorkyan, Migran N.
    Sevastianov, Leonid A.
    SARATOV FALL MEETING 2018: LASER PHYSICS, PHOTONIC TECHNOLOGIES AND MOLECULAR MODELING, 2019, 11066
  • [6] THEORY OF CONSTRAINED BROWNIAN MOTION
    Morse, David C.
    ADVANCES IN CHEMICAL PHYSICS, VOL 128, 2004, 128 : 65 - 189
  • [7] KINETIC THEORY OF THE IMPULSIVE MOTION OF AN INFINITE PLANE
    GROSS, EP
    JACKSON, EA
    PHYSICS OF FLUIDS, 1958, 1 (04) : 318 - 328
  • [8] CONSTRAINED NORMALIZATION OF HAMILTONIAN-SYSTEMS AND PERTURBED KEPLERIAN MOTION
    VANDERMEER, JC
    CUSHMAN, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1986, 37 (03): : 402 - 424
  • [9] HAMILTONIAN THEORY OF GUIDING CENTER BOUNCE MOTION
    LITTLEJOHN, RG
    PHYSICA SCRIPTA, 1982, T2 : 119 - 125
  • [10] HAMILTONIAN THEORY OF GUIDING CENTER MOTION REVISITED
    WEYSSOW, B
    BALESCU, R
    JOURNAL OF PLASMA PHYSICS, 1986, 35 : 449 - 471