Assessing the Importance of Risk Factors in Distance-Based Generalized Linear Models

被引:3
|
作者
Boj, Eva [1 ]
Costa, Teresa [1 ]
Fortiana, Josep [2 ]
Esteve, Anna [3 ]
机构
[1] Univ Barcelona, Dept Matemat Econ Financera & Actuarial, Barcelona 08034, Spain
[2] Univ Barcelona, Dept Probabilitat Log & Estat, E-08007 Barcelona, Spain
[3] Hosp Badalona Germans Trias & Pujol, CIBER Epidemiol & Salut Publ IBERESP, Ctr Estudis Epidemiol Infecc Transmissio Sexual &, Badalona 08916, Spain
关键词
Distance analyses; Nonlinear regression; Influence coefficients; Risk factors; Actuarial science; BOOTSTRAP;
D O I
10.1007/s11009-014-9415-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Predictions with distance-based linear and generalized linear models rely upon latent variables derived from the distance function. This key feature has the drawback of adding a non-linearity layer between observed predictors and response which shields one from the other and, in particular, prevents us from interpreting linear predictor coefficients as influence measures. In actuarial applications such as credit scoring or a priori rate-making we cannot forgo this capability, crucial to assess the relative leverage of risk factors. Towards the goal of recovering this functionality we define and study influence coefficients, measuring the relative importance of observed predictors. Unavoidably, due to inherent model non-linearities, these quantities will be local -valid in a neighborhood of a given point in predictor space.
引用
收藏
页码:951 / 962
页数:12
相关论文
共 50 条
  • [1] Assessing the Importance of Risk Factors in Distance-Based Generalized Linear Models
    Eva Boj
    Teresa Costa
    Josep Fortiana
    Anna Esteve
    Methodology and Computing in Applied Probability, 2015, 17 : 951 - 962
  • [2] Global and local distance-based generalized linear models
    Eva Boj
    Adrià Caballé
    Pedro Delicado
    Anna Esteve
    Josep Fortiana
    TEST, 2016, 25 : 170 - 195
  • [3] Global and local distance-based generalized linear models
    Boj, Eva
    Caballe, Adria
    Delicado, Pedro
    Esteve, Anna
    Fortiana, Josep
    TEST, 2016, 25 (01) : 170 - 195
  • [4] Prediction Error in Distance-Based Generalized Linear Models
    Boj, Eva
    Costa, Teresa
    Fortiana, Josep
    DATA SCIENCE: INNOVATIVE DEVELOPMENTS IN DATA ANALYSIS AND CLUSTERING, 2017, : 191 - 204
  • [5] Claim Reserving Using Distance-Based Generalized Linear Models
    Boj, Eva
    Costa, Teresa
    NONPARAMETRIC STATISTICS, 2016, 175 : 135 - 148
  • [6] Distance-Based Mapping of Disease Risk
    Jeffery, Caroline
    Ozonoff, Al
    White, Laura Forsberg
    Pagano, Marcello
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2013, 9 (02): : 265 - 290
  • [7] A Distance-Based Kernel Association Test Based on the Generalized Linear Mixed Model for Correlated Microbiome Studies
    Koh, Hyunwook
    Li, Yutong
    Zhan, Xiang
    Chen, Jun
    Zhao, Ni
    FRONTIERS IN GENETICS, 2019, 10
  • [8] Assessing Driving Risk Using Internet of Vehicles Data: An Analysis Based on Generalized Linear Models
    Sun, Shuai
    Bi, Jun
    Guillen, Montserrat
    Perez-Marin, Ana M.
    SENSORS, 2020, 20 (09)
  • [9] IMPORTANCE OF SCALING IN UNSUPERVISED DISTANCE-BASED ANOMALY DETECTION
    Kumpulainen, Pekka
    Kylvaja, Mikko
    Hatonen, Kimmo
    XIX IMEKO WORLD CONGRESS: FUNDAMENTAL AND APPLIED METROLOGY, PROCEEDINGS, 2009, : 2411 - 2416
  • [10] Importance of different factors for modeling nitrate transport and retention in a tile-drained agricultural catchment with distance-based generalized sensitivity analysis
    Frederiksen, Rasmus R.
    Blicher-Mathiesen, Gitte
    Vilhelmsen, Troels N.
    Christiansen, Anders V.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 912