Pseudocapacitive oxide materials for high-rate electrochemical energy storage

被引:4362
|
作者
Augustyn, Veronica [1 ]
Simon, Patrice [2 ,3 ]
Dunn, Bruce [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Toulouse 3, CIRIMAT UMR CNRS 5085, Dept Mat Sci, F-31062 Toulouse, France
[3] FR CNRS 3459, Reseau Stockage Electrochim Energie RS2E, Paris, France
基金
欧洲研究理事会;
关键词
HYDROGEN TITANATE NANOWIRES; VANADIUM-OXIDE; CHARGE-STORAGE; ION INTERCALATION; RUTHENIUM OXIDE; ELECTRODE MATERIAL; LITHIUM INSERTION; CARBON NANOTUBES; NI-FOAM; SUPERCAPACITOR;
D O I
10.1039/c3ee44164d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical energy storage technology is based on devices capable of exhibiting high energy density (batteries) or high power density (electrochemical capacitors). There is a growing need, for current and near-future applications, where both high energy and high power densities are required in the same material. Pseudocapacitance, a faradaic process involving surface or near surface redox reactions, offers a means of achieving high energy density at high charge-discharge rates. Here, we focus on the pseudocapacitive properties of transition metal oxides. First, we introduce pseudocapacitance and describe its electrochemical features. Then, we review the most relevant pseudocapacitive materials in aqueous and non-aqueous electrolytes. The major challenges for pseudocapacitive materials along with a future outlook are detailed at the end.
引用
收藏
页码:1597 / 1614
页数:18
相关论文
共 50 条
  • [1] ReS2: A High-Rate Pseudocapacitive Energy Storage Material
    Ghosh, Kalyan
    Ng, Siowwoon
    Iffelsberger, Christian
    Pumera, Martin
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (10): : 10261 - 10269
  • [2] Mechanisms of high-rate electrochemical energy storage in MXenes
    Mathis, Tyler
    Wang, Xuehang
    Simon, Patrice
    Gogotsi, Yury
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [3] Pulsed laser deposition of the porous nickel oxide thin film at room temperature for high-rate pseudocapacitive energy storage
    Wang, Huanwen
    Wang, Yalan
    Wang, Xuefeng
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2012, 18 : 92 - 95
  • [4] Nanostructure and Advanced Energy Storage: Elaborate Material Designs Lead to High-Rate Pseudocapacitive Ion Storage
    Gan, Zihan
    Yin, Junyi
    Xu, Xin
    Cheng, Yonghong
    Yu, Ting
    [J]. ACS NANO, 2022, 16 (04) : 5131 - 5152
  • [5] Pseudocapacitive Vanadium-based Materials toward High-Rate Sodium-Ion Storage
    Qiulong Wei
    Ryan H.De Block
    Danielle M.Butts
    Christopher Choi
    Bruce Dunn
    [J]. Energy & Environmental Materials, 2020, (03) : 221 - 234
  • [6] Pseudocapacitive Vanadium-based Materials toward High-Rate Sodium-Ion Storage
    Qiulong Wei
    Ryan HDe Block
    Danielle MButts
    Christopher Choi
    Bruce Dunn
    [J]. Energy & Environmental Materials., 2020, 3 (03) - 234
  • [7] Pseudocapacitive Vanadium-based Materials toward High-Rate Sodium-Ion Storage
    Wei, Qiulong
    DeBlock, Ryan H.
    Butts, Danielle M.
    Choi, Christopher
    Dunn, Bruce
    [J]. ENERGY & ENVIRONMENTAL MATERIALS, 2020, 3 (03) : 221 - 234
  • [8] Fabrication of Ni(OH)2 coated ZnO array for high-rate pseudocapacitive energy storage
    Pu, Zonghua
    Liu, Qian
    Qusti, Abdullah H.
    Asiri, Abdullah M.
    Al-Youbi, Abdulrahman O.
    Sun, Xuping
    [J]. ELECTROCHIMICA ACTA, 2013, 109 : 252 - 255
  • [9] Ultrathin nickel hydroxidenitrate nanoflakes branched on nanowire arrays for high-rate pseudocapacitive energy storage
    Liu, Jinping
    Cheng, Chuanwei
    Zhou, Weiwei
    Li, Hongxing
    Fan, Hong Jin
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (12) : 3436 - 3438
  • [10] Electrochemical Generation of Hydrated Zinc Vanadium Oxide with Boosted Intercalation Pseudocapacitive Storage for a High-Rate Flexible Zinc-Ion Battery
    Tao, Yuanxue
    Huang, Dekang
    Chen, Hao
    Luo, Yanzhu
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (14) : 16576 - 16584