Principal Component Analysis-based Mesh Decomposition

被引:0
|
作者
Chang, Jung-Shiong [1 ]
Shih, Arthur Chun-Chieh [2 ]
Tyan, Hsiao-Rong [3 ]
Fang, Wen-Hsien [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei 106, Taiwan
[2] Acad Sinica, Inst Informat Sci, Taipei 115, Taiwan
[3] Chung Yuan Christian Univ, Dept Informat & Comp Engn, Chungli 320, Taiwan
关键词
mesh decomposition; Boolean operation; PCA; protrusion degree; 3-D object;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose an automatic mesh decomposition technique based on principal component analysis (PCA) and Boolean operations. First, we calculate the normalized protrusion degree of each dual vertex on a smoothed 3-D mesh. The protrusion degree of a vertex and the vertex's 3-D coordinates form a 4-D feature vector, which we use to represent the polygon mesh. Then, we apply PCA to the set of 4-D feature vectors. The projected data along the first principal axis reveals the salient structures of the 3-D object. Therefore, by using the first component axis as the search basis, we can identify all the salient parts of an arbitrary 3-D object.
引用
收藏
页码:971 / 987
页数:17
相关论文
共 50 条
  • [1] Principal component analysis-based mesh decomposition
    Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
    不详
    不详
    [J]. J. Inf. Sci. Eng., 2009, 4 (971-987):
  • [2] Principal component analysis-based mesh decomposition
    Chang, Jung-Shiong
    Shih, Arthur Chun-Chieh
    Liao, Hong-Yuan Mark
    Fang, Wen-Hsien
    [J]. 2007 IEEE NINTH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, 2007, : 292 - +
  • [3] Analysis of principal component analysis-based and fisher discriminant analysis-based face recognition algorithms
    Naz, Erum
    Farooq, Umar
    Naz, Tabbasum
    [J]. SECOND INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES 2006, PROCEEDINGS, 2006, : 121 - 127
  • [4] Principal Component Analysis-Based Visual Saliency Detection
    Yang, Bing
    Zhang, Xiaoyun
    Chen, Li
    Gao, Zhiyong
    [J]. IEEE TRANSACTIONS ON BROADCASTING, 2016, 62 (04) : 842 - 854
  • [5] Generalized Principal Component Analysis-Based Subspace Decomposition of Fault Deviations and Its Application to Fault Reconstruction
    Du, Boyang
    Kong, Xiangyu
    Feng, Xiaowei
    [J]. IEEE ACCESS, 2020, 8 : 34177 - 34186
  • [6] Principal component analysis-based learning for preceding vehicle classification
    Mangai, Muthulingam Alarmel
    Gounden, Nanjappagounder Ammasai
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2014, 8 (01) : 28 - 35
  • [7] Analysis of Principal Component Analysis-Based Reconstruction Method for Fault Diagnosis
    Zhou, Zhe
    Yang, Chunjie
    Wen, Chenglin
    Zhang, Jie
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (27) : 7402 - 7410
  • [8] Colour matching by principal component analysis-based spectrophotometric technique
    Shams-Nateri, A.
    [J]. COLORATION TECHNOLOGY, 2009, 125 (01) : 36 - 42
  • [9] SpectraX: A Straightforward Tool for Principal Component Analysis-Based Spectral Analysis
    Yu, Jian
    Metwally, Haidy
    Kolwich, Jennifer
    Tomm, Hailey
    Klotz, Rachel
    Liu, Chang
    LeBlanc, J. C. Yves
    Covey, Thomas R.
    Ross, Avena C.
    Oleschuk, Richard D.
    [J]. Journal of the American Society for Mass Spectrometry, 1600, 35 (02): : 397 - 400
  • [10] Principal Component Analysis-Based Reflectance Analysis/Synthesis of Cosmetic Foundation
    Tominaga, Shoji
    Moriuchi, Yusuke
    [J]. JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2009, 53 (06)