On Kharitonov-type theorems for real polynomials: When is degree drop admissible?

被引:4
|
作者
Foo, Yung Kuan [1 ]
机构
[1] LW Elect & Mech Engn Private Ltd, LW Techno Ctr, Singapore 608608, Singapore
关键词
root-clustering property; interval polynomial; Kharitonov's theorem; stability; root-locus;
D O I
10.1016/j.sysconle.2006.03.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A root-locus approach is adopted to show that extension of Kharitonov-type theorem for real interval polynomial with degree drop is not only applicable to the open left-half plane, but also other regions such as the left-shifted open left-half plane and the left sector. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:777 / 779
页数:3
相关论文
共 4 条
  • [1] ON KHARITONOV-TYPE RESULTS FOR COMPLEX-COEFFICIENT INTERVAL SCHUR POLYNOMIALS
    KATBAB, A
    JURY, EI
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (09) : 2304 - 2310
  • [2] Kharitonov's theorem extension to interval polynomials which can drop in degree: A nyquist approach
    Hernandez, R
    Dormido, S
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (07) : 1009 - 1012
  • [3] Real zero polynomials and Polya-Schur type theorems
    Aleman, A
    Beliaev, D
    Hedenmalm, H
    JOURNAL D ANALYSE MATHEMATIQUE, 2004, 94 (1): : 49 - 60
  • [4] Real zero polynomials and Pólya-Schur type theorems
    Alexandru Aleman
    Dmitry Beliaev
    Haakan Hedenmalm
    Journal d’Analyse Mathematique, 2004, 94 : 49 - 60