Alternative Capture of Noncoding RNAs or Protein-Coding Genes by Herpesviruses to Alter Host T Cell Function

被引:57
|
作者
Guo, Yang Eric [1 ]
Riley, Kasandra J. [2 ]
Iwasaki, Akiko [3 ,4 ]
Steitz, Joan A. [2 ,4 ]
机构
[1] Yale Univ, Sch Med, Dept Cell Biol, New Haven, CT 06536 USA
[2] Yale Univ, Sch Med, Dept Mol Biophys & Biochem, New Haven, CT 06536 USA
[3] Yale Univ, Sch Med, Dept Immunol, New Haven, CT 06536 USA
[4] Yale Univ, Sch Med, Howard Hughes Med Inst, New Haven, CT 06536 USA
关键词
MALIGNANT CATARRHAL FEVER; NUCLEOTIDE-SEQUENCE; MICRORNA; EXPRESSION; GAMMA; SEMAPHORINS; RECOGNITION; ACTIVATION; RECEPTORS; REGULATOR;
D O I
10.1016/j.molcel.2014.03.025
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In marmoset T cells transformed by Herpesvirus saimiri (HVS), a viral U-rich noncoding (nc) RNA, HSUR 1, specifically mediates degradation of host microRNA-27 (miR-27). High-throughput sequencing of RNA after crosslinking immunoprecipitation (HITS-CLIP) identified mRNAs targeted by miR-27 as enriched in the T cell receptor (TCR) signaling pathway, including GRB2. Accordingly, transfection of miR-27 into human T cells attenuates TCR-induced activation of mitogen-activated protein kinases (MAPKs) and induction of CD69. MiR-27 also robustly regulates SEMA7A and IFN-gamma, key modulators and effectors of T cell function. Knockdown or ectopic expression of HSUR 1 alters levels of these proteins in virally transformed cells. Two other T-lymphotropic gamma-herpesviruses, AlHV-1 and OvHV-2, do not produce a noncoding RNA to downregulate miR-27 but instead encode homologs of miR-27 target genes. Thus, oncogenic gamma-herpesviruses have evolved diverse strategies to converge on common targets in host T cells.
引用
收藏
页码:67 / 79
页数:13
相关论文
共 50 条
  • [1] Defining Essentiality Score of Protein-Coding Genes and Long Noncoding RNAs
    Zeng, Pan
    Chen, Ji
    Meng, Yuhong
    Zhou, Yuan
    Yang, Jichun
    Cui, Qinghua
    FRONTIERS IN GENETICS, 2018, 9
  • [2] Identify the critical protein-coding genes and long noncoding RNAs in cardiac myxoma
    Cheng, Nan
    Wu, Yuanbin
    Zhang, Huajun
    Guo, Yi
    Cui, Huimin
    Wei, Shixiong
    Zhao, Yuancheng
    Wang, Rong
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (08) : 13441 - 13452
  • [3] CCG: An Integrative Resource of Cancer Protein-coding Genes and Long Noncoding RNAs
    Liu, Mengrong
    Yang, Yu-Cheng T.
    Xu, Gang
    Tan, Chang
    Lu, Zhi John
    DISCOVERY MEDICINE, 2016, 22 (123) : 351 - 359
  • [4] Chronic lymphocytic leukemia: interplay between noncoding RNAs and protein-coding genes
    Calin, George A.
    Croce, Carlo M.
    BLOOD, 2009, 114 (23) : 4761 - 4770
  • [5] Distinguishing protein-coding and noncoding genes in the human genome
    Clamp, Michele
    Fry, Ben
    Kamal, Mike
    Xie, Xiaohui
    Cuff, James
    Lin, Michael F.
    Kellis, Manolis
    Lindblad-Toh, Kerstin
    Lander, Eric S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (49) : 19428 - 19433
  • [6] cncRNAdb: a manually curated resource of experimentally supported RNAs with both protein-coding and noncoding function
    Huang, Yan
    Wang, Jing
    Zhao, Yue
    Wang, Huafeng
    Liu, Tianyuan
    Li, Yuhe
    Cui, Tianyu
    Li, Weiyi
    Feng, Yige
    Luo, Jiaxin
    Gong, Jiaqi
    Ning, Lin
    Zhang, Yong
    Wang, Dong
    Zhang, Yang
    NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D65 - D70
  • [7] Pre-mRNA splicing: from protein-coding to noncoding RNAs
    Bindereif, Albrecht
    RNA, 2015, 21 (04) : 571 - 572
  • [8] Bacterial Noncoding RNAs Excised from within Protein-Coding Transcripts
    Dar, Daniel
    Sorek, Rotem
    MBIO, 2018, 9 (05):
  • [9] Circular RNAs: Unexpected outputs of many protein-coding genes
    Wilusz, Jeremy E.
    RNA BIOLOGY, 2017, 14 (08) : 1007 - 1017
  • [10] Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs
    Housman, Gali
    Ulitsky, Igor
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2016, 1859 (01): : 31 - 40