Weakly based modules over Dedekind domains

被引:6
|
作者
Hrbek, Michal [1 ]
Ruzicka, Pavel [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague 18675 8, Czech Republic
关键词
Minimal generating set; Weak basis; Dedekind domain; Local; Torsion; Semisimple;
D O I
10.1016/j.jalgebra.2013.09.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a subset X of a left R-module M is weakly independent provided that whenever a(1)x(1) + ... + a(n)x(n) = 0 for pairwise distinct elements x(1), ... , x(n) form X, then none of a(1), ... , a(n) is invertible in R. Weakly independent generating sets (we call them weak bases) are exactly generating sets minimal with respect to inclusion. The aim of the paper is to characterize modules over Dedekind domains possessing a weak basis. We will characterize them as follows: Let R be a Dedekind domain and let M be a x-generated R-module, for some infinite cardinal x. Then M has a weak basis iff at least one of the following conditions is satisfied: (1) There are two different prime ideals P, Q of R such that dim(R/P) (M/PM) = dim(R/Q) (M/QM) = x; (2) There are a prime ideal P of R and a decomposition M similar or equal to F circle plus N where F is a free module and dim(R/P) (tau N/P tau N) = gen(N); (3) There is a projection of M onto an R-module circle plus(P is an element of Spec(R)) V-P, where V-P is a vector space over R/P with dim(R/P)(V-P) < x for each P is an element of Spec(R) and Sigma(P is an element of Spec(R)) dim(R/P)(V-P)=x. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:251 / 268
页数:18
相关论文
共 50 条
  • [1] Regularly weakly based modules over right perfect rings and Dedekind domains
    Hrbek, Michal
    Ruzicka, Pavel
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (02) : 367 - 377
  • [2] Regularly weakly based modules over right perfect rings and Dedekind domains
    Michal Hrbek
    Pavel Růžička
    Czechoslovak Mathematical Journal, 2017, 67 : 367 - 377
  • [3] SUPPLEMENTED MODULES OVER DEDEKIND DOMAINS
    HAUSEN, J
    PACIFIC JOURNAL OF MATHEMATICS, 1982, 100 (02) : 387 - 402
  • [4] SUPERDECOMPOSABLE MODULES OVER DEDEKIND DOMAINS
    MEINEL, K
    ARCHIV DER MATHEMATIK, 1982, 39 (01) : 11 - 18
  • [5] Tilting modules over small Dedekind domains
    Trlifaj, J
    Wallutis, SL
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 172 (01) : 109 - 117
  • [6] Arithmetic modules over generalized Dedekind domains
    Wijayanti, Indah Emilia
    Marubayashi, Hidetoshi
    Ernanto, Iwan
    Sutopo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (03)
  • [7] Comultiplication modules over a pullback of Dedekind domains
    Atani, Reza Ebrahimi
    Atani, Shahabaddin Ebrahimi
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (04) : 1103 - 1114
  • [8] Indecomposable Torsion Modules over Dedekind Domains
    Jia Chun DU Department of MathematicsUniversity of Science and Technology of ChinaAnhui PRChina
    数学研究与评论, 2011, 31 (01) : 73 - 78
  • [9] DEDEKIND DOMAINS AND DEDEKIND MODULES
    Kusniyanti, Elvira
    Garminia, Hanni
    Astuti, Pudji
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2016, 38 (03): : 249 - 260
  • [10] TENSOR PRODUCT OF MODULES OVER DEDEKIND DOMAINS
    YAHYA, SM
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1982, 40 (1-2): : 85 - 91