Covariant canonical quantization

被引:5
|
作者
von Hippel, G. M.
Wohlfarth, M. N. R.
机构
[1] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada
[2] Univ Hamburg, Inst Theoret Phys, D-22761 Hamburg, Germany
来源
EUROPEAN PHYSICAL JOURNAL C | 2006年 / 47卷 / 03期
关键词
D O I
10.1140/epjc/s2006-02595-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a manifestly covariant quantization procedure based on the de Donder-Weyl Hamiltonian formulation of classical field theory. This procedure agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d > 1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and we apply the formalism to a Dumber of simple examples. These show that covariant canonical quantization produces both the Klein-Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses. Covariant canonical quantization can thus be understood as a "first" or pre-quantization within the framework of conventional QFT.
引用
收藏
页码:861 / 872
页数:12
相关论文
共 50 条
  • [1] Covariant canonical quantization
    G.M. von Hippel
    M.N.R. Wohlfarth
    [J]. The European Physical Journal C - Particles and Fields, 2006, 47 : 861 - 872
  • [3] Perturbation theory in covariant canonical quantization
    Basu, S
    [J]. PHYSICAL REVIEW D, 2005, 71 (08): : 1 - 7
  • [4] Covariant gauge fixing and canonical quantization
    McKeon, D. G. C.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2012, 90 (03) : 249 - 264
  • [5] Covariant canonical quantization of fields and Bohmian mechanics
    Nikolic, H
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2005, 42 (03): : 365 - 374
  • [6] Covariant canonical quantization of fields and Bohmian mechanics
    H. Nikolić
    [J]. The European Physical Journal C - Particles and Fields, 2005, 42 : 365 - 374
  • [7] Canonical quantization of Galilean covariant field theories
    Santos, ES
    de Montigny, M
    Khanna, FC
    [J]. ANNALS OF PHYSICS, 2005, 320 (01) : 21 - 55
  • [8] COVARIANT CANONICAL QUANTIZATION OF THE RELATIVISTIC FREE PARTICLE TOP
    MALIK, RP
    [J]. PHYSICAL REVIEW D, 1991, 43 (06): : 1914 - 1918
  • [9] COVARIANT CANONICAL QUANTIZATION OF THE GREEN-SCHWARZ SUPERSTRING
    NISSIMOV, E
    PACHEVA, S
    SOLOMON, S
    [J]. NUCLEAR PHYSICS B, 1988, 297 (02) : 349 - 373
  • [10] Quantization of a New Canonical, Covariant, and Symplectic Hamiltonian Density
    Chester, David
    Arsiwalla, Xerxes D.
    Kauffman, Louis H.
    Planat, Michel
    Irwin, Klee
    [J]. SYMMETRY-BASEL, 2024, 16 (03):