Biogeography-based optimisation with chaos

被引:114
|
作者
Saremi, Shahrzad [1 ]
Mirjalili, Seyedali [1 ]
Lewis, Andrew [1 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Brisbane, Qld 4111, Australia
来源
NEURAL COMPUTING & APPLICATIONS | 2014年 / 25卷 / 05期
关键词
Biogeography-based optimisation algorithm; BBO; Chaos; Constrained optimisation; Chaotic maps; Optimisation; KRILL HERD; DIFFERENTIAL EVOLUTION; ALGORITHM;
D O I
10.1007/s00521-014-1597-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The biogeography-based optimisation (BBO) algorithm is a novel evolutionary algorithm inspired by biogeography. Similarly, to other evolutionary algorithms, entrapment in local optima and slow convergence speed are two probable problems it encounters in solving challenging real problems. Due to the novelty of this algorithm, however, there is little in the literature regarding alleviating these two problems. Chaotic maps are one of the best methods to improve the performance of evolutionary algorithms in terms of both local optima avoidance and convergence speed. In this study, we utilise ten chaotic maps to enhance the performance of the BBO algorithm. The chaotic maps are employed to define selection, emigration, and mutation probabilities. The proposed chaotic BBO algorithms are benchmarked on ten test functions. The results demonstrate that the chaotic maps (especially Gauss/mouse map) are able to significantly boost the performance of BBO. In addition, the results show that the combination of chaotic selection and emigration operators results in the highest performance.
引用
收藏
页码:1077 / 1097
页数:21
相关论文
共 50 条
  • [1] Biogeography-based optimisation with chaos
    Shahrzad Saremi
    Seyedali Mirjalili
    Andrew Lewis
    [J]. Neural Computing and Applications, 2014, 25 : 1077 - 1097
  • [2] Chaotic biogeography-based optimisation
    Guo, Weian
    Li, Wuzhao
    Kang, Qi
    Wang, Lei
    Wu, Qidi
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2014, 5 (02) : 127 - 136
  • [3] Biogeography-Based Optimisation For Data Clustering
    Hammouri, Abdelaziz I.
    Abdullah, Salwani
    [J]. NEW TRENDS IN SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES, 2014, 265 : 951 - 963
  • [4] Modified biogeography-based optimisation (MBBO)
    Lohokare, M. R.
    Devi, S.
    Pattnaik, S. S.
    Panigrahi, B. K.
    Joshi, J. G.
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2011, 3 (04) : 252 - 266
  • [5] Particle based on biogeography-based optimisation for global optimisation problems
    Feng, Quanxi
    Liu, Sanyang
    Tang, Guoqiang
    Chen, Huazhou
    [J]. International Journal of Innovative Computing and Applications, 2013, 5 (04) : 228 - 239
  • [6] Biogeography-based optimisation of Cognitive Radio system
    Kaur, Kiranjot
    Rattan, Munish
    Patterh, Manjeet Singh
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 2014, 101 (01) : 24 - 36
  • [7] Biogeography-based optimisation with migration velocity for multi-objective optimisation problems
    Li, Wuzhao
    Mao, Yanfen
    Guo, Weian
    Wang, Lei
    Wu, Qidi
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2017, 10 (01) : 43 - 50
  • [8] Biogeography-based optimisation for flexible manufacturing system scheduling problem
    Paslar, Shahla
    Ariffin, M. K. A.
    Tamjidy, Mehran
    Hong, Tang Sai
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2015, 53 (09) : 2690 - 2706
  • [9] Improved motorised spindle control using a biogeography-based optimisation algorithm
    Wu, Yu Hou
    Pan, Zhen Ning
    Zhang, Li Xiu
    [J]. International Journal of Intelligent Systems Technologies and Applications, 2020, 19 (03): : 234 - 256
  • [10] Biogeography-based optimisation search algorithm for block matching motion estimation
    Zhang, P.
    Wei, P.
    Yu, H. -Y.
    [J]. IET IMAGE PROCESSING, 2012, 6 (07) : 1014 - 1023