Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage

被引:20
|
作者
Ehrhart, B. [1 ,2 ]
Gill, D. [1 ]
机构
[1] Sandia Natl Labs, Concentrated Solar Technol Grp, POB 5800, Albuquerque, NM 87185 USA
[2] Univ Colorado, JSCBB, Dept Chem & Biol Engn, Boulder, CO 80309 USA
关键词
Annual Efficiency; Central Receiver; Thermal Energy Storage; DELSOL; SOLERGY; Molten Salt;
D O I
10.1016/j.egypro.2014.03.081
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL3 and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case, which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. The optical designs for all four cases were done using the DELSOL3 computer code; the results were then passed to the SOLERGY computer code, which uses historical typical meteorological year (TMY) data to estimate the plant performance over the course of one year of operation. Each of the four cases was sized to produce 100 MWe of gross electric power, have sensible liquid thermal storage capacity to generate electric power at full rated production level for 6 hours, and have a solar multiple of 1.8. There is a fairly dramatic difference between the design point and annual average performance. The largest differences are in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Another notable finding in the current study is the relatively small difference in annual average efficiencies between the Base and High Temperature cases. For both the Surround Field and North Field cases, the increase in annual solar to electric efficiency is < 2%, despite an increase in thermal to electric conversion efficiency of over 8%. The reasons for this include the increased thermal losses due to higher temperature operation and operational losses due to start-up and shut-down of plant sub-systems. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing. (C) 2013 D. Gill. Published by Elsevier Ltd.
引用
收藏
页码:752 / 761
页数:10
相关论文
共 50 条
  • [1] A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants
    Fasquelle, T.
    Falcoz, Q.
    Neveu, P.
    Hoffmann, J. -F.
    [J]. APPLIED ENERGY, 2018, 212 : 1153 - 1164
  • [2] Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants
    Jacob, Rhys
    Belusko, Martin
    Ines Fernandez, A.
    Cabeza, Luisa F.
    Saman, Wasim
    Bruno, Frank
    [J]. APPLIED ENERGY, 2016, 180 : 586 - 597
  • [3] Study of Rock Suitability for High Temperature Thermal Energy Storage in Concentrated Solar Tower Power Plants
    Jemmal, Yousra
    Zari, Nadia
    Maaroufi, Mohamed
    [J]. PROCEEDINGS OF 2015 3RD IEEE INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC'15), 2015, : 161 - 166
  • [4] Thermal energy storage systems for concentrated solar power plants
    Pelay, Ugo
    Luo, Lingai
    Fan, Yilin
    Stitou, Driss
    Rood, Mark
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 79 : 82 - 100
  • [5] Performance analysis of high temperature sensible heat thermal energy storage systems for concentrated solar thermal power plants
    Tehrani, S. Saeed Mostafavi
    Shoraka, Yashar
    Taylor, Robert A.
    Menictas, Chris
    [J]. PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2017, VOL 1, 2017,
  • [6] Thermochemical energy storage at high temperature for concentrated solar power plants: a critical review
    Bielsa, Daniel
    Faik, Abdessamad
    Arias, Pedro L.
    [J]. DYNA, 2023, 98 (06): : 612 - 619
  • [7] New Materials for Thermal Energy Storage in Concentrated Solar Power Plants
    Guerreiro, Luis
    Collares-Pereira, Manuel
    [J]. SOLARPACES 2015: INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, 2016, 1734
  • [9] Technologically relevant nanomaterials for thermal energy storage in concentrated solar power plants
    Pradhan, Sulolit
    Curtis, Calvin J.
    Blake, Daniel
    Glatzmaier, Greg
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [10] Materials corrosion for thermal energy storage systems in concentrated solar power plants
    Walczak, Magdalena
    Pineda, Fabiola
    Fernandez, Angel G.
    Mata-Torres, Carlos
    Escobar, Rodrigo A.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 86 : 22 - 44