Time-course data prediction for repeatedly measured gene expression

被引:6
|
作者
Bhattacharjee, Atanu [1 ]
Vishwakarma, Gajendra K. [2 ]
机构
[1] Tata Mem Hosp, Sect Biostat, Ctr Canc Epidemiol, Navi Mumbai 410210, India
[2] Indian Inst Technol ISM, Dept Appl Math, Dhanbad 826004, Bihar, India
关键词
Crossover trial; Bayesian algorithm; multiple imputation; three arms; three periods; BAYESIAN-ANALYSIS; LONGITUDINAL DATA; GROWTH; MODEL; IDENTIFICATION; DISEASE;
D O I
10.1142/S1793524519500335
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Variability in time course gene expression data is a natural phenomenon. The intention of this work is to predict the future time point data through observed sample data point. The Bayesian inference is carried to serve the objective. A total of 6 replicates 3 time point's data of 218 genes expression is adopted to illustrate the method. The estimates are found consistent with HPD interval to predict the future time point gene expression value. This proposed method can be adopted in other gene expression data setup to predict the future time course data.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Time-Course Gene Set Analysis for Longitudinal Gene Expression Data
    Hejblum, Boris P.
    Skinner, Jason
    Thiebaut, Rodolphe
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (06)
  • [2] Clustering of time-course gene expression data using functional data analysis
    Song, Joon Jin
    Lee, Ho-Jin
    Morris, Jeffrey S.
    Kang, Sanghoon
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2007, 31 (04) : 265 - 274
  • [3] A new distance measurement for clustering time-course gene expression data
    Chen, GR
    Dai, Y
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 2929 - 2932
  • [4] Clustering of short time-course gene expression data with dissimilar replicates
    Cinar, Ozan
    Ilk, Ozlem
    Iyigun, Cem
    ANNALS OF OPERATIONS RESEARCH, 2018, 263 (1-2) : 405 - 428
  • [5] Clustering of short time-course gene expression data with dissimilar replicates
    Ozan Cinar
    Ozlem Ilk
    Cem Iyigun
    Annals of Operations Research, 2018, 263 : 405 - 428
  • [6] Optimal classification for time-course gene expression data using functional data analysis
    Song, Joon Jin
    Deng, Weiguo
    Lee, Ho-Jin
    Kwon, Deukwoo
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2008, 32 (06) : 426 - 432
  • [7] Bootstrapping Time-Course Gene Expression Data for Gene Networks: Application to Gene Relevance Networks
    Garren, Jeonifer M.
    Kim, Jaejik
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (12) : 1374 - 1384
  • [8] A recursively partitioned mixture model for clustering time-course gene expression data
    Koestler, Devin C.
    Marsit, Carmen J.
    Christensen, Brock C.
    Kelsey, Karl T.
    Houseman, E. Andres
    TRANSLATIONAL CANCER RESEARCH, 2014, 3 (03) : 217 - +
  • [9] Cluster-based network model for time-course gene expression data
    Inoue, Lurdes Y. T.
    Neira, Mauricio
    Nelson, Colleen
    Gleave, Martin
    Etzioni, Ruth
    BIOSTATISTICS, 2007, 8 (03) : 507 - 525
  • [10] BAYESIAN CLUSTERING OF REPLICATED TIME-COURSE GENE EXPRESSION DATA WITH WEAK SIGNALS
    Fu, Audrey Qiuyan
    Russell, Steven
    Bray, Sarah J.
    Tavare, Simon
    ANNALS OF APPLIED STATISTICS, 2013, 7 (03): : 1334 - 1361