Temperature dependent deformation mechanisms of Al0.3CoCrFeNi high-entropy alloy, starting from serrated flow behavior

被引:28
|
作者
Zhang, Yu [1 ]
Li, Jinshan [1 ]
Wang, Jun [1 ]
Wang, William Yi [1 ]
Kou, Hongchao [1 ]
Beaugnon, Eric [2 ,3 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
[2] Univ Grenoble Alps, LNCMI, F-38000 Grenoble, France
[3] CNRS, LNCMI, F-38000 Grenoble, France
关键词
High-entropy alloys; Deformation mechanisms; Serrations; Twinning; Stacking faults; STACKING-FAULT ENERGY; STRAIN;
D O I
10.1016/j.jallcom.2018.04.305
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The deformation mechanisms of Al0.3CoCrFeNi high-entropy alloy (HEA) is investigated through studying the serrated flow behavior under different conditions. Results show that abnormal variation trends happen in the serration curves during compression, denoting a transition of the deformation mechanism with the temperature increasing. Microstructure characterization reveals this transition is a twining to slip deformation, which is evidenced by nanoscale twins at 600 degrees C but high density dislocations at 800 degrees C. This temperature dependent deformation behavior is thought to be related with the dislocation mobility and stacking fault energy (SFE). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 43
页数:5
相关论文
共 50 条
  • [1] The Precipitation Behavior in Al0.3CoCrFeNi High-Entropy Alloy Affected by Deformation and Annealing
    Zhang, Jinlong
    Qiu, Risheng
    Tan, Xinu
    Quan, Xuantong
    Song, Bo
    Liu, Qing
    METALS, 2023, 13 (01)
  • [2] Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy
    Zhang, Lijun
    Yu, Pengfei
    Cheng, Hu
    Zhang, Huan
    Diao, Haoyan
    Shi, Yunzhu
    Chen, Bilin
    Chen, Peiyong
    Feng, Rui
    Bai, Jie
    Jing, Qin
    Ma, Mingzhen
    Liaw, P. K.
    Li, Gong
    Liu, Riping
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (12): : 5871 - 5875
  • [3] Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy
    Lijun Zhang
    Pengfei Yu
    Hu Cheng
    Huan Zhang
    Haoyan Diao
    Yunzhu Shi
    Bilin Chen
    Peiyong Chen
    Rui Feng
    Jie Bai
    Qin Jing
    Mingzhen Ma
    P. K. Liaw
    Gong Li
    Riping Liu
    Metallurgical and Materials Transactions A, 2016, 47 : 5871 - 5875
  • [4] Deformation behavior of ultrahard Al0.3CoCrFeNi high-entropy alloy treated by plasma nitriding
    Wang, Wandong
    Song, Shuangxi
    Reddy, Kolan Madhav
    Li, Wei
    Liu, Pan
    Wang, Xiaodong
    MATERIALS LETTERS, 2019, 255
  • [5] Characterization of hot deformation behavior of Al0.3CoCrFeNi high-entropy alloy and development of processing map
    Patnamsetty, Madan
    Ghosh, Sumit
    Somani, Mahesh C.
    Peura, Pasi
    Journal of Alloys and Compounds, 2022, 914
  • [6] Characterization of hot deformation behavior of Al0.3CoCrFeNi high-entropy alloy and development of processing map
    Patnamsetty, Madan
    Ghosh, Sumit
    Somani, Mahesh C.
    Peura, Pasi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 914
  • [7] Annealing effect for the Al0.3CoCrFeNi high-entropy alloy fibers
    Li, Dongyue
    Gao, Michael C.
    Hawk, Jeffrey A.
    Zhang, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 778 : 23 - 29
  • [8] High Strength and Deformation Mechanisms of Al0.3CoCrFeNi High-Entropy Alloy Thin Films Fabricated by Magnetron Sputtering
    Liao, Wei-Bing
    Zhang, Hongti
    Liu, Zhi-Yuan
    Li, Pei-Feng
    Huang, Jian-Jun
    Yu, Chun-Yan
    Lu, Yang
    ENTROPY, 2019, 21 (02)
  • [9] High-Strength Behavior of the Al0.3CoCrFeNi High-Entropy Alloy Single Crystals
    Kireeva, Irina, V
    Chumlyakov, Yuriy, I
    Pobedennaya, Zinaida, V
    Vyrodova, Anna V.
    Saraeva, Anastasia A.
    METALS, 2020, 10 (09) : 1 - 11
  • [10] Hot Deformation and Subsequent Annealing on the Microstructure and Hardness of an Al0.3CoCrFeNi High-entropy Alloy
    Jun Wang
    Hongchao Li
    Haoxue Yang
    Yu Zhang
    William Yi Wang
    Jinshan Li
    Acta Metallurgica Sinica (English Letters), 2021, 34 : 1527 - 1536