Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles

被引:114
|
作者
Maiorano, Andrea [1 ]
Martre, Pierre [1 ]
Asseng, Senthold [2 ]
Ewert, Frank [3 ,28 ]
Mueller, Christoph [4 ]
Rotter, Reimund P. [5 ,29 ]
Ruane, Alex C. [6 ]
Semenov, Mikhail A. [7 ]
Wallach, Daniel [8 ]
Wang, Enli [9 ]
Alderman, Phillip D. [10 ,32 ]
Kassie, Belay T. [2 ]
Biernath, Christian [11 ]
Basso, Bruno [12 ,13 ]
Cammarano, Davide [2 ,30 ]
Challinor, Andrew J. [14 ,15 ]
Doltra, Jordi [16 ]
Dumont, Benjamin [12 ,13 ]
Rezaei, Ehsan Eyshi [3 ,26 ]
Gayler, Sebastian [17 ]
Kersebaum, Kurt Christian [18 ]
Kimball, Bruce A. [19 ]
Koehler, Ann-Kristin [14 ]
Liu, Bing [20 ]
O'Leary, Garry J. [21 ]
Olesen, Jorgen E. [22 ]
Ottman, Michael J. [23 ]
Priesack, Eckart [11 ]
Reynolds, Matthew [10 ]
Stratonovitch, Pierre [7 ]
Streck, Thilo [24 ]
Thorburn, Peter J. [25 ]
Waha, Katharina [4 ,31 ]
Wall, Gerard W. [19 ]
White, Jeffrey W. [19 ]
Zhao, Zhigan [9 ,27 ]
Zhu, Yan
机构
[1] Montpellier SupAgro, INRA, UMR LEPSE, 2 Pl Viala, F-34060 Montpellier, France
[2] Univ Florida, Agr & Biol Engn Dept, Gainesville, FL 32611 USA
[3] Univ Bonn, Inst Crop Sci & Resource Conservat, D-53115 Bonn, Germany
[4] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[5] Nat Resources Inst Finland Luke, FI-01301 Vantaa, Finland
[6] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[7] Rothamsted Res, Computat & Syst Biol Dept, Harpenden AL5 2JQ, Herts, England
[8] INRA, Agrosyst & Dev Terr, UMR 1248, F-31326 Castanet Tolosan, France
[9] CSIRO Agr, Black Mountain, ACT 2601, Australia
[10] CIMMYT, Int AP 6-641, Mexico City 06600, DF, Mexico
[11] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Biochem Plant Pathol, D-85764 Neuherberg, Germany
[12] Michigan State Univ, Dept Geol Sci, E Lansing, MI 48823 USA
[13] Michigan State Univ, WK Kellogg Biol Stn, E Lansing, MI 48823 USA
[14] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England
[15] Ctr Int Agr Trop, CGIAR ESSP Program Climate Change Agr & Food Secu, Cali 6713, Colombia
[16] Cantabrian Agr Res & Training Ctr, Muriedas 39600, Spain
[17] Univ Hohenheim, Inst Soil Sci & Land Evaluat, D-70599 Stuttgart, Germany
[18] Leibniz Ctr Agr Landscape Res, Inst Landscape Syst Anal, D-15374 Muncheberg, Germany
[19] ARS, USDA, US Arid Land Agr Res Ctr, Maricopa, AZ 85138 USA
[20] Nanjing Agr Univ, Coll Agr, Nanjing 210095, Jiangsu, Peoples R China
[21] Grains Innovat Pk, Dept Econ Dev Jobs Transport & Resources, Horsham, Vic 3400, Australia
[22] Aarhus Univ, Dept Agroecol, DK-8830 Tjele, Denmark
[23] Univ Arizona, Sch Plant Sci, Tucson, AZ 85721 USA
[24] Univ Hohenheim, Inst Soil Sci & Land Evaluat, D-70599 Stuttgart, Germany
[25] CSIRO Agr, 306 Carmody Rd, St Lucia, Qld 4067, Australia
[26] Ctr Dev Res ZEF, Walter Flex Str 3, D-53133 Bonn, Germany
[27] China Agr Univ, Beijing 100193, Peoples R China
[28] Leibniz Ctr Agr, 36 Landscape Res, D-15374 Muncheberg, Germany
[29] Univ Gottingen, Dept Crop Sci, Div Crop Prod Syst Trop, D-37077 Gottingen, Germany
[30] James Hutton Inst, Dundee DD2 5DA, Scotland
[31] CSIRO Agr, 306 Carmody Rd, St Lucia, Qld 4067, Australia
[32] Oklahoma State Univ, Dept Plant & Soil Sci, Stillwater, OK 74078 USA
基金
英国生物技术与生命科学研究理事会;
关键词
Impact uncertainty; High temperature; Model improvement; Multi-model ensemble; Wheat crop model; CLIMATE-CHANGE; SIMULATION-MODEL; SPRING WHEAT; NITROGEN UPTAKE; WATER-DEFICIT; HEAT-STRESS; YIELD; GROWTH; IMPACTS; FIELD;
D O I
10.1016/j.fcr.2016.05.001
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
To improve climate change impact estimates and to quantify their uncertainty, multi-model ensembles (MMES) have been suggested. Model improvements can improve the accuracy of simulations and reduce the uncertainty of climate change impact assessments. Furthermore, they can reduce the number of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA Hot Serial Cereal experiment (calibration data set). Simulation results from before and after model improvement were then evaluated with independent field experiments from a CIMMYT worldwide field trial network (evaluation data set). Model improvements decreased the variation (10th to 90th model ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures >24 degrees C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME uncertainty range by 27% increased MME prediction skills by 47%. Results suggest that the mean level of variation observed in field experiments and used as a benchmark can be reached with half the number of models in the MME. Improving crop models is therefore important to increase the certainty of model-based impact assessments and allow more practical, i.e. smaller MMES to be used effectively. (C)2016 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:5 / 20
页数:16
相关论文
共 50 条
  • [1] Quantifying model uncertainty using Bayesian multi-model ensembles
    Wagena, Moges B.
    Bhatt, Gopal
    Buell, Elyce
    Sommerlot, Andrew R.
    Fuka, Daniel R.
    Easton, Zachary M.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 117 : 89 - 99
  • [2] Multi-model ensembles for assessment of flood losses and associated uncertainty
    Figueiredo, Rui
    Schroeter, Kai
    Weiss-Motz, Alexander
    Martina, Mario L. V.
    Kreibich, Heidi
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2018, 18 (05) : 1297 - 1314
  • [3] Multi-Model Ensembles for Upper Atmosphere Models
    Elvidge, S.
    Granados, S. R.
    Angling, M. J.
    Brown, M. K.
    Themens, D. R.
    Wood, A. G.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2023, 21 (03):
  • [4] Uncertainty analysis of hydrological multi-model ensembles based on CBP-BMA method
    He, Shaokun
    Guo, Shenglian
    Liu, Zhangjun
    Yin, Jiabo
    Chen, Kebing
    Wu, Xushu
    HYDROLOGY RESEARCH, 2018, 49 (05): : 1636 - 1651
  • [5] Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe
    Yin, Xiaogang
    Kersebaum, Kurt Christian
    Kollas, Chris
    Baby, Sanmohan
    Beaudoin, Nicolas
    Manevski, Kiril
    Palosuo, Taru
    Nendel, Claas
    Wu, Lianhai
    Hoffmann, Munir
    Hoffmann, Holger
    Sharif, Behzad
    Armas-Herrera, Cecilia M.
    Bindi, Marco
    Charfeddine, Monia
    Conradt, Tobias
    Constantin, Julie
    Ewert, Frank
    Ferrise, Roberto
    Gaiser, Thomas
    de Cortazar-Atauri, Inaki Garcia
    Giglio, Luisa
    Hlavinka, Petr
    Lana, Marcos
    Launay, Marie
    Louarn, Gaeetan
    Manderscheid, Remy
    Mary, Bruno
    Mirschel, Wilfried
    Moriondo, Marco
    Oeztuerk, Isik
    Pacholski, Andreas
    Ripoche-Wachter, Dominique
    Roetter, Reimund P.
    Ruget, Francoise
    Trnka, Mirek
    Ventrella, Domenico
    Weigel, Hans -Joachim
    Olesen, Jurgen E.
    EUROPEAN JOURNAL OF AGRONOMY, 2017, 84 : 152 - 165
  • [6] Performance of multi-model ensembles for the simulation of temperature variability over Ontario, Canada
    Al Samouly, Aly
    Luong, Chanh Nien
    Li, Zhong
    Smith, Spencer
    Baetz, Brian
    Ghaith, Maysara
    ENVIRONMENTAL EARTH SCIENCES, 2018, 77 (13)
  • [7] Performance of multi-model ensembles for the simulation of temperature variability over Ontario, Canada
    Aly Al Samouly
    Chanh Nien Luong
    Zhong Li
    Spencer Smith
    Brian Baetz
    Maysara Ghaith
    Environmental Earth Sciences, 2018, 77
  • [8] Reliability of multi-model and structurally different single-model ensembles
    Yokohata, Tokuta
    Annan, James D.
    Collins, Matthew
    Jackson, Charles S.
    Tobis, Michael
    Webb, Mark J.
    Hargreaves, Julia C.
    CLIMATE DYNAMICS, 2012, 39 (3-4) : 599 - 616
  • [9] Reliability of multi-model and structurally different single-model ensembles
    Tokuta Yokohata
    James D. Annan
    Matthew Collins
    Charles S. Jackson
    Michael Tobis
    Mark J. Webb
    Julia C. Hargreaves
    Climate Dynamics, 2012, 39 : 599 - 616
  • [10] Exploring multi-model atmospheric GCM ensembles with ANOVA
    D. L. R. Hodson
    R. T. Sutton
    Climate Dynamics, 2008, 31 : 973 - 986