Interference-induced magnetoresistance in HgTe quantum wells

被引:13
|
作者
Gornyi, I. V. [1 ,2 ]
Kachorovskii, V. Yu. [1 ,2 ]
Ostrovsky, P. M. [3 ,4 ]
机构
[1] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[2] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[3] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[4] RAS, LD Landau Theoret Phys Inst, Moscow 119334, Russia
关键词
WEAK-LOCALIZATION; ANTILOCALIZATION; SYSTEMS; TRANSITION; TRANSPORT; ELECTRON;
D O I
10.1103/PhysRevB.90.085401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the quantum interference correction to the conductivity in HgTe quantum wells using the Bernevig-Hughes-Zhang model. This model consists of two independent species (blocks) of massive Dirac fermions. We describe the crossover between the orthogonal and symplectic classes with increasing the carrier concentration and calculate, respectively, weak localization and antilocalization corrections in the absence of the block mixing and assuming the white-noise disorder within each block. We have calculated the interference-induced magnetoresistance in a wide interval of magnetic fields, in particular, beyond the diffusion regime. Remarkably, each Dirac cone taken separately gives a linear contribution to the low-field magnetoresistance, which turns out to be asymmetric in magnetic field B. We present an interpretation of this result in terms of the Berry-phase formalism. The contributions of the two blocks are related to each other by replacing B to -B, so that the total magnetoresistance is symmetric and parabolic in the limit B -> 0. However, in some range of parameters, field dependence turns out to be strongly nonmonotonous. We also demonstrate that block mixing gives rise to additional singular diffusive modes which do not show up in the absence of mixing.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Linear magnetoresistance in HgTe quantum wells
    Gusev, G. M.
    Olshanetsky, E. B.
    Kvon, Z. D.
    Mikhailov, N. N.
    Dvoretsky, S. A.
    PHYSICAL REVIEW B, 2013, 87 (08):
  • [2] Magnetoresistance in the in-plane magnetic field induced semimetallic phase of inverted HgTe quantum wells
    Khouri, T.
    Pezzini, S.
    Bendias, M.
    Leubner, P.
    Zeitler, U.
    Hussey, N. E.
    Buhmann, H.
    Molenkamp, L. W.
    Titov, M.
    Wiedmann, S.
    PHYSICAL REVIEW B, 2019, 99 (07)
  • [3] Sign-alternating photoconductivity and magnetoresistance oscillations induced by terahertz radiation in HgTe quantum wells
    Otteneder, M.
    Dmitriev, I. A.
    Candussio, S.
    Savchenko, M. L.
    Kozlov, D. A.
    Bel'kov, V. V.
    Kvon, Z. D.
    Mikhailov, N. N.
    Dvoretsky, S. A.
    Ganichev, S. D.
    PHYSICAL REVIEW B, 2018, 98 (24)
  • [4] Quantum coherence generated by interference-induced state selectiveness
    Garreau, JC
    JOURNAL OF MODERN OPTICS, 2002, 49 (1-2) : 43 - 54
  • [5] Quantum interference-induced stability of repulsively bound pairs of excitations
    Santos, Lea F.
    Dykman, M. I.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [6] The temperature dependence of anomalous magnetoresistance and weak antilocalization in HgTe/CdTe (111) quantum wells
    Zhang, J.
    Zhang, S. X.
    Qiu, X. F.
    Wu, Y.
    Kang, T. T.
    Li, T. X.
    Chen, P. P.
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (07)
  • [7] Creation and quenching of interference-induced emitter-quantum wells within double-barrier tunneling structures
    Zhao, PJ
    Woolard, DL
    Gelmont, BL
    Cui, HL
    JOURNAL OF APPLIED PHYSICS, 2003, 94 (03) : 1833 - 1849
  • [8] Quantum interference in HgTe structures
    Gornyi, I. V.
    Kachorovskii, V. Yu
    Mirlin, A. D.
    Ostrovsky, P. M.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2014, 251 (09): : 1786 - 1800
  • [9] Magnetic properties of HgTe quantum wells
    Scharf, Benedikt
    Matos-Abiague, Alex
    Fabian, Jaroslav
    PHYSICAL REVIEW B, 2012, 86 (07)
  • [10] Electroluminescence from HgTe quantum wells
    Vasilyev, Yu B.
    Mikhailov, N. N.
    Antonov, A., V
    Ikonnikov, A., V
    Gavrilenko, V., I
    2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,