Improved Hamiltonian for Minkowski Yang-Mills theory

被引:49
|
作者
Moore, GD
机构
[1] Princeton University, Joseph Henry Laboratories, Princeton, NJ 08544
关键词
sphaleron; classical Minkowski field theory; topology change; lattice gauge theory;
D O I
10.1016/S0550-3213(96)00497-X
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
I develop an improved Hamiltonian for classical, Minkowski Yang-Mills theory, which evolves infrared fields with tree level corrections from lattice spacing a beginning at O(a(4)). I use it to investigate the response of Chem-Simons number to a chemical potential, and to compute the maximal Lyapunov exponent. The Lyapunov exponent has a small a limit, and the Chern-Simons number response appears to be approaching one at the finest lattices considered. In both cases the limit is within 10% of the limit found using the unimproved (Kogut-Susskind) Hamiltonian. For the maximal Lyapunov exponent the limits differ between Hamiltonians by about 5%, significant at about 5 sigma, indicating that while a small a limit exists, its value depends on the specifics of the lattice cutoff. For Chern-Simons number the difference between Hamiltonians is within statistical errors of about 10%, which constitutes an upper bound on the lattice regulation dependence.
引用
收藏
页码:689 / 726
页数:38
相关论文
共 50 条
  • [1] HAMILTONIAN OF THE MASSIVE YANG-MILLS THEORY
    SILVEIRA, AD
    [J]. PHYSICAL REVIEW D, 1980, 22 (06): : 1390 - 1393
  • [2] Unconstrained Hamiltonian formulation of Yang-Mills theory
    Salmela, A
    [J]. Quark Confinement and the Hadron Spectrum VI, 2005, 756 : 263 - 265
  • [3] SPINOR ANALYSIS OF YANG-MILLS THEORY IN THE MINKOWSKI SPACE
    PERVUSHIN, VN
    HOREJSI, J
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1984, 22 (04): : 397 - 401
  • [4] REGULARITY OF CONSTRAINTS IN THE MINKOWSKI SPACE YANG-MILLS THEORY
    SNIATYCKI, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 141 (03) : 593 - 597
  • [5] HAMILTONIAN ANALYSIS OF TOPOLOGICALLY MASSIVE YANG-MILLS THEORY
    EVENS, D
    KUNSTATTER, G
    [J]. PHYSICAL REVIEW D, 1988, 37 (02): : 435 - 440
  • [6] Hamiltonian formulation and boundary conditions in Yang-Mills theory
    Cronström, C
    [J]. ACTA PHYSICA SLOVACA, 2000, 50 (03) : 369 - 379
  • [7] Hamiltonian approach to Yang-Mills theory in Coulomb gauge
    Reinhardt, H.
    Epple, D.
    Schleifenbaum, W.
    [J]. QUARK CONFINEMENT AND THE HADRON SPECTRUM VII, 2007, 892 : 93 - +
  • [8] EMBEDDING YANG-MILLS THEORY INTO UNIVERSAL YANG-MILLS THEORY
    RAJEEV, SG
    [J]. PHYSICAL REVIEW D, 1991, 44 (06): : 1836 - 1841
  • [9] Hamiltonian flow in Coulomb gauge Yang-Mills theory
    Leder, Markus
    Pawlowski, Jan M.
    Reinhardt, Hugo
    Weber, Axel
    [J]. PHYSICAL REVIEW D, 2011, 83 (02):
  • [10] The Yang-Mills fields on the Minkowski space
    Qikeng Lu
    [J]. Science in China Series A: Mathematics, 1998, 41 : 1061 - 1067