Reliable a posteriori mesh adaptivity in Discrete Fracture Network flow simulations

被引:12
|
作者
Berrone, S. [1 ,2 ]
Borio, A. [1 ,2 ]
Vicini, F. [1 ,2 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] INdAM Res Grp GNCS, Bari, Italy
关键词
Discrete Fracture Network flow simulations; Simulations in complex geometries; Mesh adaptivity; A posteriori error estimates; VIRTUAL ELEMENT METHOD; CONSTRAINED OPTIMIZATION FORMULATION; HYBRID MORTAR METHOD; STEADY-STATE FLOW; SOLVING FLOW; POROUS-MEDIA; CONFORMING MESHES; DARCY FLOW; MATRIX; DISCRETIZATION;
D O I
10.1016/j.cma.2019.06.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new approach for the flow simulation in very complex Discrete Fracture Networks (DFNs) based on PDE-constrained optimization has been recently proposed in Berrone et al. (2013, 2014) with the aim of improving robustness with respect to geometrical complexities. In Berrone et al. (2016) a rigorous derivation of "a posteriori" error estimates has been performed, proving an equivalence relation between the discretization error and suitable quantities that are computable from the discrete solution and the problem data. In this paper, the previous results are applied to several fracture networks in order to investigate mesh adaptivity applied to complex realistic fracture networks. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:904 / 931
页数:28
相关论文
共 50 条
  • [1] Uncertainty quantification analysis in discrete fracture network flow simulations
    Pieraccini, S.
    [J]. GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2020, 11 (01)
  • [2] Uncertainty quantification analysis in discrete fracture network flow simulations
    S. Pieraccini
    [J]. GEM - International Journal on Geomathematics, 2020, 11
  • [3] Simulations of hydrodynamic dispersions in network of discrete fracture
    Mo, HH
    Lin, DZ
    Roegiers, JC
    [J]. ROCK MECHANICS TOOLS AND TECHNIQUES, VOLS 1 AND 2, 1996, : 989 - 993
  • [4] RELIABLE COMPUTATION AND LOCAL MESH ADAPTIVITY IN LIMIT ANALYSIS
    Sysala, Stanislav
    Haslinger, Jaroslav
    Repin, Sergey
    [J]. PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 19, 2019, : 149 - 158
  • [5] Multilevel Graph Partitioning for Three-Dimensional Discrete Fracture Network Flow Simulations
    Hayato Ushijima-Mwesigwa
    Jeffrey D. Hyman
    Aric Hagberg
    Ilya Safro
    Satish Karra
    Carl W. Gable
    Matthew R. Sweeney
    Gowri Srinivasan
    [J]. Mathematical Geosciences, 2021, 53 : 1699 - 1724
  • [6] Multilevel Graph Partitioning for Three-Dimensional Discrete Fracture Network Flow Simulations
    Ushijima-Mwesigwa, Hayato
    Hyman, Jeffrey D.
    Hagberg, Aric
    Safro, Ilya
    Karra, Satish
    Gable, Carl W.
    Sweeney, Matthew R.
    Srinivasan, Gowri
    [J]. MATHEMATICAL GEOSCIENCES, 2021, 53 (08) : 1699 - 1724
  • [7] Influence of mesh orientation in discrete element method simulations of fracture processes
    Birck, Gabriel
    Iturrioz, Ignacio
    Riera, Jorge D.
    Miguel, Leticia F. F.
    [J]. JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2018, 53 (06): : 400 - 407
  • [8] A posteriori error estimation and mesh adaptivity for finite volume and finite element methods
    Barth, TJ
    [J]. ADAPTIVE MESH REFINEMENT - THEORY AND APPLICATIONS, 2005, 41 : 183 - 202
  • [9] The virtual element method for discrete fracture network simulations
    Benedetto, Matias Fernando
    Berrone, Stefano
    Pieraccini, Sandra
    Scialo, Stefano
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 : 135 - 156
  • [10] Mixed Virtual Elements for discrete fracture network simulations
    Fernando Benedetto, Matias
    Borio, Andrea
    Scialo, Stefano
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2017, 134 : 55 - 67