A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks

被引:45
|
作者
Kadeethum, Teeratorn [1 ]
O'Malley, Daniel [2 ]
Fuhg, Jan Niklas [1 ]
Choi, Youngsoo [3 ]
Lee, Jonghyun [4 ]
Viswanathan, Hari S. [2 ]
Bouklas, Nikolaos [1 ,5 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp, Engn, Ithaca, NY 14853 USA
[2] Los Alamos Natl Lab, Computat Earth Sci, Los Alamos, NM USA
[3] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
[4] Univ Hawaii Manoa, CiVil & Environm Engn Water Resources Res Ctr, Honolulu, HI 96822 USA
[5] Cornell Univ, Ctr Appl Math, Ithaca, NY 14853 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 12期
关键词
INFORMED NEURAL-NETWORKS; DEEP LEARNING FRAMEWORK; MONTE-CARLO; FLOW;
D O I
10.1038/s43588-021-00171-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Here we employ and adapt the image-to-image translation concept based on conditional generative adversarial networks (cGAN) for learning a forward and an inverse solution operator of partial differential equations (PDEs). We focus on steady-state solutions of coupled hydromechanical processes in heterogeneous porous media and present the parameterization of the spatially heterogeneous coefficients, which is exceedingly difficult using standard reduced-order modeling techniques. We show that our framework provides a speed-up of at least 2,000 times compared to a finite-element solver and achieves a relative root-mean-square error (r.m.s.e.) of less than 2% for forward modeling. For inverse modeling, the framework estimates the heterogeneous coefficients, given an input of pressure and/or displacement fields, with a relative r.m.s.e. of less than 7%, even for cases where the input data are incomplete and contaminated by noise. The framework also provides a speed-up of 120,000 times compared to a Gaussian prior-based inverse modeling approach while also delivering more accurate results.
引用
收藏
页码:819 / 829
页数:11
相关论文
共 50 条
  • [1] A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks
    Teeratorn Kadeethum
    Daniel O’Malley
    Jan Niklas Fuhg
    Youngsoo Choi
    Jonghyun Lee
    Hari S. Viswanathan
    Nikolaos Bouklas
    [J]. Nature Computational Science, 2021, 1 : 819 - 829
  • [2] Data-driven Full-waveform Inversion Surrogate using Conditional Generative Adversarial Networks
    Saraiva, Marcus
    Forechi, Avelino
    Neto, Jorcy de Oliveira
    DelRey, Antonio
    Rauber, Thomas
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [3] Data-driven concurrent nanostructure optimization based on conditional generative adversarial networks
    Baucour, Arthur
    Kim, Myungjoon
    Shin, Jonghwa
    [J]. NANOPHOTONICS, 2022, 11 (12) : 2865 - 2873
  • [4] Data-Driven Crowd Simulation with Generative Adversarial Networks
    Amirian, Javad
    van Toll, Wouter
    Hayet, Jean-Bernard
    Pettre, Julien
    [J]. PROCEEDINGS OF THE 32ND INTERNATIONAL CONFERENCE ON COMPUTER ANIMATION AND SOCIAL AGENTS (CASA 2019), 2019, : 7 - 10
  • [5] Distributed Conditional Generative Adversarial Networks (GANs) for Data-Driven Millimeter Wave Communications in UAV Networks
    Zhang, Qianqian
    Ferdowsi, Aidin
    Saad, Walid
    Bennis, Mehdi
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) : 1438 - 1452
  • [6] Data driven background estimation in HEP using generative adversarial networks
    Victor Lohezic
    Mehmet Ozgur Sahin
    Fabrice Couderc
    Julie Malcles
    [J]. The European Physical Journal C, 83
  • [7] Data driven background estimation in HEP using generative adversarial networks
    Lohezic, Victor
    Sahin, Mehmet Ozgur
    Couderc, Fabrice
    Malcles, Julie
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (03):
  • [8] Continuous conditional generative adversarial networks for data-driven solutions of poroelasticity with heterogeneous material properties
    Kadeethum, T.
    O'Malley, D.
    Choi, Y.
    Viswanathan, H. S.
    Bouklas, N.
    Yoon, H.
    [J]. COMPUTERS & GEOSCIENCES, 2022, 167
  • [9] Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks
    Maevskiy, A.
    Derkach, D.
    Kazeev, N.
    Ustyuzhanin, A.
    Artemev, M.
    Anderlini, L.
    [J]. 19TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2020, 1525
  • [10] A Framework for Anomaly Detection in IoT Networks Using Conditional Generative Adversarial Networks
    Ullah, Imtiaz
    Mahmoud, Qusay H.
    [J]. IEEE ACCESS, 2021, 9 : 165907 - 165931