Learning-based on-line testing in feedforward neural networks

被引:0
|
作者
Kamiura, N [1 ]
Yamato, K [1 ]
Isokawa, T [1 ]
Matsui, N [1 ]
机构
[1] Himeji Inst Technol, Dept Comp Engn, Himeji, Hyogo 6712201, Japan
关键词
D O I
10.1109/OLT.2002.1030206
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Learning-based on-line testing in feedforward neural networks (NNs) is discussed. After the convergence of the ordinary learning, the re-learning employing two sigmoid activation functions per neuron in the last layer of the NN is made. It sets up the range of erroneous potentials produced from the last layer, and enables us to detect faults without extra hardware.
引用
收藏
页码:180 / 182
页数:3
相关论文
共 50 条
  • [1] On-line Identification of Multivariable Processes Using EKF Learning-based Adaptive Neural Networks
    Salahshoor, Karim
    Kamalabady, Amin Sabet
    [J]. 2008 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 407 - 412
  • [2] On-line testing in digital neural networks
    Demidenko, S
    Piuri, V
    [J]. PROCEEDINGS OF THE FIFTH ASIAN TEST SYMPOSIUM (ATS '96), 1996, : 295 - 300
  • [3] Optimized feedforward neural networks. for on-line identification of nonlinear models
    Alessandri, A
    Sanguineti, M
    Maggiore, M
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1751 - 1756
  • [4] On-Line Learning-Based Allocation of Base Stations and Channels in Cognitive Radio Networks
    Liu, Zhengyang
    Li, Feng
    Yu, Dongxiao
    Karl, Holger
    Sheng, Hao
    [J]. WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PT I, 2020, 12384 : 346 - 358
  • [5] Feedforward neural networks initialization based on discriminant learning
    Chumachenko, Kateryna
    Iosifidis, Alexandros
    Gabbouj, Moncef
    [J]. NEURAL NETWORKS, 2022, 146 : 220 - 229
  • [6] On-line learning algorithms for locally recurrent neural networks
    Campolucci, P
    Uncini, A
    Piazza, F
    Rao, BD
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (02): : 253 - 271
  • [7] Harmonic neural networks for on-line learning vector quantisation
    Wang, JH
    Peng, CY
    Rau, JD
    [J]. IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2000, 147 (05): : 485 - 492
  • [8] On-line learning in RBF neural networks: a stochastic approach
    Marinaro, M
    Scarpetta, S
    [J]. NEURAL NETWORKS, 2000, 13 (07) : 719 - 729
  • [9] Convergent on-line algorithms for supervised learning in neural networks
    Grippo, L
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (06): : 1284 - 1299
  • [10] On-line Gauss-Newton-based learning for fully recurrent neural networks
    Vartak, A. A.
    Georgiopoulos, M.
    Anagnostopoulos, G. C.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E867 - E876