Joint principal trend analysis for longitudinal high-dimensional data

被引:5
|
作者
Zhang, Yuping [1 ,2 ,3 ]
Ouyang, Zhengqing [4 ,5 ,6 ]
机构
[1] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
[2] Univ Connecticut, Ctr Hlth, Ctr Quantitat Med, Farmington, CT 06030 USA
[3] Univ Connecticut, CT Inst Brain & Cognit Sci, Inst Collaborat Hlth Intervent & Policy, Inst Syst Genom, Storrs, CT 06269 USA
[4] Jackson Lab Genom Med, Farmington, CT 06032 USA
[5] Univ Connecticut, Dept Biomed Engn, Inst Syst Gen, Storrs, CT 06269 USA
[6] Univ Connecticut, Ctr Hlth, Dept Genet & Genome Sci, Farmington, CT 06030 USA
关键词
Dimension reduction; High-dimensional data analysis; Joint principal trend analysis; Latent models; Longitudinal data analysis; HUMAN CELL-CYCLE; GENE-EXPRESSION; DNA;
D O I
10.1111/biom.12751
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a research scenario motivated by integrating multiple sources of information for better knowledge discovery in diverse dynamic biological processes. Given two longitudinal high-dimensional datasets for a group of subjects, we want to extract shared latent trends and identify relevant features. To solve this problem, we present a new statistical method named as joint principal trend analysis (JPTA). We demonstrate the utility of JPTA through simulations and applications to gene expression data of the mammalian cell cycle and longitudinal transcriptional profiling data in response to influenza viral infections.
引用
收藏
页码:430 / 438
页数:9
相关论文
共 50 条
  • [1] Lagged principal trend analysis for longitudinal high-dimensional data
    Zhang, Yuping
    [J]. STAT, 2019, 8 (01):
  • [2] Principal component analysis for sparse high-dimensional data
    Raiko, Tapani
    Ilin, Alexander
    Karhunen, Juha
    [J]. NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 566 - 575
  • [3] Ultra high-dimensional semiparametric longitudinal data analysis
    Green, Brittany
    Lian, Heng
    Yu, Yan
    Zu, Tianhai
    [J]. BIOMETRICS, 2021, 77 (03) : 903 - 913
  • [4] Multilevel Functional Principal Component Analysis for High-Dimensional Data
    Zipunnikov, Vadim
    Caffo, Brian
    Yousem, David M.
    Davatzikos, Christos
    Schwartz, Brian S.
    Crainiceanu, Ciprian
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) : 852 - 873
  • [5] A joint normal-binary (probit) model for high-dimensional longitudinal data
    Delporte, Margaux
    Fieuws, Steffen
    Molenberghs, Geert
    Verbeke, Geert
    De Coninck, David
    Hoorens, Vera
    [J]. STATISTICAL MODELLING, 2023,
  • [6] On principal component analysis for high-dimensional XCSR
    Behdad, Mohammad
    French, Tim
    Barone, Luigi
    Bennamoun, Mohammed
    [J]. EVOLUTIONARY INTELLIGENCE, 2012, 5 (02) : 129 - 138
  • [7] On principal component analysis for high-dimensional XCSR
    Mohammad Behdad
    Tim French
    Luigi Barone
    Mohammed Bennamoun
    [J]. Evolutionary Intelligence, 2012, 5 (2) : 129 - 138
  • [8] Visualization of high-dimensional data on the probabilistic principal surface
    Chang, KY
    Ghosh, J
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1 AND 2: INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT IN THE GLOBAL ECONOMY, 2005, : 1315 - 1319
  • [9] Random forests for high-dimensional longitudinal data
    Capitaine, Louis
    Genuer, Robin
    Thiebaut, Rodolphe
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (01) : 166 - 184
  • [10] TEST OF SIGNIFICANCE FOR HIGH-DIMENSIONAL LONGITUDINAL DATA
    Fang, Ethan X.
    Ning, Yang
    Li, Runze
    [J]. ANNALS OF STATISTICS, 2020, 48 (05): : 2622 - 2645