FGNG: A fast multi-dimensional growing neural gas implementation

被引:6
|
作者
Teixeira Mendes, Carlos Augusto [1 ]
Gattass, Marcelo [1 ]
Lopes, Helio [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Informat, Rio De Janeiro, Brazil
关键词
Growing neural gas; Multi-dimensional data; Spatial data structures; Algorithms;
D O I
10.1016/j.neucom.2013.08.033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Growing Neural Gas algorithm (GNG) is a well-known classification algorithm that is capable of capturing topological relationships that exist in the input data. Unfortunately, simple implementations of the GNG algorithm have time complexity O(n(2)), where n is the number of nodes in the graph. This fact makes these implementations impractical for use in production environments where large data sets are used. This paper aims to propose an optimized implementation that breaks the O(n(2)) barrier and that addresses data in high-dimensional spaces without changing the GNG semantics. The experimental results show speedups of over 50 times for graphs with 200,000 nodes. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:328 / 340
页数:13
相关论文
共 50 条
  • [1] Fast multi-dimensional NMR of proteins
    Eriks Kupče
    Ray Freeman
    [J]. Journal of Biomolecular NMR, 2003, 25 : 349 - 354
  • [2] Fast multi-dimensional Hadamard spectroscopy
    Kupce, E
    Freeman, R
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2003, 163 (01) : 56 - 63
  • [3] Fast multi-dimensional NMR of proteins
    Kupce, E
    Freeman, R
    [J]. JOURNAL OF BIOMOLECULAR NMR, 2003, 25 (04) : 349 - 354
  • [4] Multi-dimensional Homomorphisms and Their Implementation in OpenCL
    Rasch, Ari
    Gorlatch, Sergei
    [J]. INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2018, 46 (01) : 101 - 119
  • [5] Multi-dimensional Homomorphisms and Their Implementation in OpenCL
    Ari Rasch
    Sergei Gorlatch
    [J]. International Journal of Parallel Programming, 2018, 46 : 101 - 119
  • [6] Fast Autonomous Growing Neural Gas
    Garcia-Rodriguez, J.
    Angelopoulou, A.
    Garcia-Chamizo, J. M.
    Psarrou, A.
    Orts-Escolano, S.
    Morell-Gimenez, V.
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 725 - 732
  • [7] Multi-dimensional recurrent neural networks
    Graves, Alex
    Fernandez, Santiago
    Schmidhuber, Juergen
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 1, PROCEEDINGS, 2007, 4668 : 549 - +
  • [8] Neural representation of multi-dimensional stimuli
    Eurich, CW
    Wilke, SD
    Schwegler, H
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 115 - 121
  • [9] Smart Multi-dimensional Gas Chromatography
    Fan, Xudong
    [J]. 2013 IEEE SENSORS, 2013, : 5 - 7
  • [10] Multi-dimensional fast rule filter automata
    Fuchssteiner, B
    Kemper, A
    [J]. PHYSICA D, 1999, 129 (1-2): : 130 - 142