Fractal and multifractal properties of a family of fractal networks

被引:46
|
作者
Li, Bao-Gen [1 ,2 ]
Yu, Zu-Guo [1 ,2 ,3 ]
Zhou, Yu [1 ,2 ]
机构
[1] Xiangtan Univ, Minist Educ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Minist Educ, Key Lab Instelligent Comp & Informat, Xiangtan 411105, Hunan, Peoples R China
[3] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
关键词
network dynamics; random graphs; networks; CHAOS GAME REPRESENTATION; COMPLEX; SEQUENCES;
D O I
10.1088/1742-5468/2014/02/P02020
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, we study the fractal and multifractal properties of a family of fractal networks introduced by Callus et al (2007 Proc. Nat. Acad. Sci. USA 104 774(1). In this fractal network model, there is a parameter which is between 0 and 1, and allows for tuning, the level of fractality in the network. Here we examine the multifractal behavior of these networks, the dependence relationship of the fractal dimension and the multifractal parameters on parameter c. First, we find that the empirical tract al dimensions of these networks obtained by our program coincide with the theoretical formula given by Song et of (2006 Nature Phys. 2 275). Then from the shape of the tau(q) and D(q) curves, we find the existence of multifractality in these networks. Last, we find that there exists a linear relationship between the average information dimension < D(1)> and the parameter e.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fractal and multifractal analyses of bipartite networks
    Liu, Jin-Long
    Wang, Jian
    Yu, Zu-Guo
    Xie, Xian-Hua
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [2] Fractal and multifractal analyses of bipartite networks
    Jin-Long Liu
    Jian Wang
    Zu-Guo Yu
    Xian-Hua Xie
    [J]. Scientific Reports, 7
  • [3] Fractal and Multifractal Properties of Geochemical Fields
    Shuyun Xie
    Zhengyu Bao
    [J]. Mathematical Geology, 2004, 36 : 847 - 864
  • [4] FRACTAL AND MULTIFRACTAL PROPERTIES OF POISSONIAN GROWTH
    NAGATANI, T
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (05) : 1457 - 1460
  • [5] Fractal and multifractal properties of geochemical fields
    Xie, SY
    Bao, ZY
    [J]. MATHEMATICAL GEOLOGY, 2004, 36 (07): : 847 - 864
  • [6] Fractal and multifractal measures of natural and synthetic fracture networks
    Berkowitz, B
    Hadad, A
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B6) : 12205 - 12218
  • [7] Direct fractal measurement and multifractal properties of fracture surfaces
    Xie, HP
    Wang, JA
    Stein, E
    [J]. PHYSICS LETTERS A, 1998, 242 (1-2) : 41 - 50
  • [8] Fractal and multifractal properties of exit times and Poincare recurrences
    Afraimovich, V
    Zaslavsky, GM
    [J]. PHYSICAL REVIEW E, 1997, 55 (05) : 5418 - 5426
  • [9] Fractal and multifractal properties of exit times and Poincare recurrences
    Afraimovich, V.
    Zaslavsky, G.M.
    [J]. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 55 (5-A pt A):
  • [10] Direct fractal measurement and multifractal properties of fracture surfaces
    Xie, Heping
    Wang, Jin-An
    Stein, E.
    [J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 242 (1-2): : 41 - 50