Reservoir Computing Using Multiple Lasers With Feedback on a Photonic Integrated Circuit

被引:78
|
作者
Sugano, Chihiro [1 ]
Kanno, Kazutaka [1 ]
Uchida, Atsushi [1 ]
机构
[1] Saitama Univ, Dept Informat & Comp Sci, Saitama 3388570, Japan
基金
日本学术振兴会;
关键词
Reservoir computing; semiconductor lasers; chaos; photonic integrated circuit; information processing; SEMICONDUCTOR-LASERS; PERFORMANCE; CHAOS; IMPLEMENTATION; GENERATION; SYSTEMS;
D O I
10.1109/JSTQE.2019.2929179
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a scheme for reservoir computing using multiple semiconductor lasers with optical feedback arranged in parallel on a photonic integrated circuit, and we investigate the performance of reservoir computing numerically. The virtual nodes are obtained from the temporal waveforms of the outputs of the parallel reservoir lasers. We test the chaotic time-series prediction task, memory capacity, and nonlinear channel equalization task to investigate the performance of reservoir computing. We found that our scheme using multiple lasers outperforms that using a single laser with multiple delay times. Large memory capacity can also be obtained for the multiple lasers. Finally, we investigate the effect of parameter mismatch of the multiple lasers on reservoir computing performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Compact reservoir computing with a photonic integrated circuit
    Takano, Kosuke
    Sugano, Chihiro
    Inubushi, Masanobu
    Yoshimura, Kazuyuki
    Sunada, Satoshi
    Kanno, Kazutaka
    Uchida, Atsushi
    [J]. OPTICS EXPRESS, 2018, 26 (22): : 29424 - 29439
  • [2] Integrated photonic delay-lasers for reservoir computing
    Van der Sande, Guy
    Harkhoe, Krishan
    Katumba, Andrew
    Bienstman, Peter
    Verschaffelt, Guy
    [J]. PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXVIII, 2020, 11274
  • [3] A Multiple-Input Strategy to Efficient Integrated Photonic Reservoir Computing
    Andrew Katumba
    Matthias Freiberger
    Peter Bienstman
    Joni Dambre
    [J]. Cognitive Computation, 2017, 9 : 307 - 314
  • [4] A Multiple-Input Strategy to Efficient Integrated Photonic Reservoir Computing
    Katumba, Andrew
    Freiberger, Matthias
    Bienstman, Peter
    Dambre, Joni
    [J]. COGNITIVE COMPUTATION, 2017, 9 (03) : 307 - 314
  • [5] Parallel and deep reservoir computing using semiconductor lasers with optical feedback
    Hasegawa, Hiroshi
    Kanno, Kazutaka
    Uchida, Atsushi
    [J]. NANOPHOTONICS, 2023, 12 (05) : 869 - 881
  • [6] Photonic Reservoir Computing System for Pattern Recognition Based on an Array of Four Distributed Feedback Lasers
    Guo, Xingxing
    Zhou, Hanxu
    Xiang, Shuiying
    Yu, Qian
    Zhang, Yahui
    Han, Yanan
    Hao, Yue
    [J]. ACS PHOTONICS, 2024, 11 (03): : 1327 - 1334
  • [7] Advances in Photonic Reservoir Computing on an Integrated Platform
    Vandoorne, Kristof
    Fiers, Martin
    Van Vaerenbergh, Thomas
    Verstraeten, David
    Schrauwen, Benjamin
    Dambre, Joni
    Bienstman, Peter
    [J]. 2011 13TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,
  • [8] Photonic generation of microwave waveform using delay feedback photonic reservoir computing system with SOA
    Qu, Qi
    Ning, Tigang
    Bai, Bing
    Dong, Fei
    Feng, Yuxiang
    Pei, Li
    [J]. OPTICS AND LASER TECHNOLOGY, 2024, 172
  • [9] Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback
    Bueno, Julian
    Brunner, Daniel
    Soriano, Miguel C.
    Fischer, Ingo
    [J]. OPTICS EXPRESS, 2017, 25 (03): : 2401 - 2412
  • [10] Tunable optical filter with integrated photonic reservoir computing
    Li, Wenlu
    Pei, Li
    Bai, Bing
    Zuo, Xiaoyan
    Wang, Jianshuai
    Zheng, Jingjing
    Li, Jing
    Ning, Tigang
    [J]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2023, 52 (09):