3D Mineral Prospectivity Mapping of Zaozigou Gold Deposit, West Qinling, China: Deep Learning-Based Mineral Prediction

被引:10
|
作者
Yu, Zhengbo [1 ]
Liu, Bingli [1 ,2 ]
Xie, Miao [1 ]
Wu, Yixiao [1 ]
Kong, Yunhui [1 ]
Li, Cheng [1 ,3 ]
Chen, Guodong [1 ]
Gao, Yaxin [1 ]
Zha, Shuai [1 ]
Zhang, Hanyuan [1 ]
Wang, Lu [1 ]
Tang, Rui [1 ]
机构
[1] Chengdu Univ Technol, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
[2] CAGS, Inst Geophys & Geochem Explorat, Key Lab Geochem Explorat, Langfang 065000, Peoples R China
[3] Chinese Acad Geol Sci, Inst Mineral Resources, Beijing 100037, Peoples R China
基金
中国国家自然科学基金;
关键词
3D mineral prospectivity mapping; geological and geochemical quantitative prediction model at depth; Deep auto-encoder network; Student Teacher Ore-induced Anomaly Detection; Zaozigou gold deposit; BIG DATA ANALYTICS; ANOMALY DETECTION; INTEGRATION; NETWORK;
D O I
10.3390/min12111382
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper focuses on the scientific problem of quantitative mineralization prediction at large depth in the Zaozigou gold deposit, west Qinling, China. Five geological and geochemical indicators are used to establish geological and geochemical quantitative prediction model. Machine learning and Deep learning algorithms are employed for 3D Mineral Prospectivity Mapping (MPM). Especially, the Student Teacher Ore-induced Anomaly Detection (STOAD) model is proposed based on the knowledge distillation (KD) idea combined with Deep Auto-encoder (DAE) network model. Compared to DAE, STOAD uses three outputs for anomaly detection and can make full use of information from multiple levels of data for greater overall robustness. The results show that the quantitative mineral resources prediction by applying the STOAD model has a good performance, where the value of Area Under Curve (AUC) is 0.97. Finally, three main mineral exploration targets are delineated for further investigation.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] 3D Mineral Prospectivity Mapping of Zaozigou Gold Deposit, West Qinling, China: Machine Learning-Based Mineral Prediction
    Kong, Yunhui
    Chen, Guodong
    Liu, Bingli
    Xie, Miao
    Yu, Zhengbo
    Li, Cheng
    Wu, Yixiao
    Gao, Yaxin
    Zha, Shuai
    Zhang, Hanyuan
    Wang, Lu
    Tang, Rui
    [J]. MINERALS, 2022, 12 (11)
  • [2] Machine Learning-Based 3D Modeling of Mineral Prospectivity Mapping in the Anqing Orefield, Eastern China
    Yaozu Qin
    Liangming Liu
    Weicheng Wu
    [J]. Natural Resources Research, 2021, 30 : 3099 - 3120
  • [3] Machine Learning-Based 3D Modeling of Mineral Prospectivity Mapping in the Anqing Orefield, Eastern China
    Qin, Yaozu
    Liu, Liangming
    Wu, Weicheng
    [J]. NATURAL RESOURCES RESEARCH, 2021, 30 (05) : 3099 - 3120
  • [4] 3D Mineral Prospectivity Mapping Based on Deep Metallogenic Prediction Theory: A Case Study of the Lala Copper Mine, Sichuan, China
    Xiao, Keyan
    Xiang, Jie
    Fan, Mingjing
    Xu, Yang
    [J]. JOURNAL OF EARTH SCIENCE, 2021, 32 (02) : 348 - 357
  • [5] 3D Mineral Prospectivity Mapping Based on Deep Metallogenic Prediction Theory: A Case Study of the Lala Copper Mine, Sichuan, China
    Keyan Xiao
    Jie Xiang
    Mingjing Fan
    Yang Xu
    [J]. Journal of Earth Science, 2021, (02) - 357
  • [6] 3D Mineral Prospectivity Mapping Based on Deep Metallogenic Prediction Theory: A Case Study of the Lala Copper Mine, Sichuan, China
    Keyan Xiao
    Jie Xiang
    Mingjing Fan
    Yang Xu
    [J]. Journal of Earth Science, 2021, 32 (02) : 348 - 357
  • [7] 3D Mineral Prospectivity Mapping Based on Deep Metallogenic Prediction Theory: A Case Study of the Lala Copper Mine, Sichuan, China
    Keyan Xiao
    Jie Xiang
    Mingjing Fan
    Yang Xu
    [J]. Journal of Earth Science, 2021, 32 : 348 - 357
  • [8] 3D Mineral Prospectivity Modeling for the Low-Sulfidation Epithermal Gold Deposit: A Case Study of the Axi Gold Deposit, Western Tianshan, NW China
    Mao, Xiancheng
    Zhang, Wei
    Liu, Zhankun
    Ren, Jia
    Bayless, Richard C.
    Deng, Hao
    [J]. MINERALS, 2020, 10 (03)
  • [9] The gold mineral systems of the West Qinling orogen, central China: New insight from the Baguamiao gold deposit
    Yu, Hui-Dong
    Fu, Yu-Zhen
    Liu, Xin-Yu
    Said, Nuru
    Cao, Hua-Wen
    Liu, Chun-Mei
    Fang, Wei-Xuan
    Liu, Jia-Jun
    Zou, Hao
    [J]. ORE GEOLOGY REVIEWS, 2023, 162
  • [10] 3D Mineral Prospectivity Mapping with Random Forests: A Case Study of Tongling, Anhui, China
    Jie Xiang
    Keyan Xiao
    Emmanuel John M. Carranza
    Jianping Chen
    Shi Li
    [J]. Natural Resources Research, 2020, 29 : 395 - 414