Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond

被引:42
|
作者
Field, Daniel E. [5 ,6 ]
Cuenca, Jerome A. [1 ]
Smith, Matthew [2 ]
Fairclough, Simon M. [3 ]
Massabuau, Fabien C-P [3 ,4 ]
Pomeroy, James W. [5 ]
Williams, Oliver [1 ]
Oliver, Rachel A. [3 ]
Thayne, Iain [2 ]
Kuball, Martin [5 ]
机构
[1] Univ Cardiff, Sch Phys & Astron, Diamond Foundry, Cardiff CF24 3AA, Wales
[2] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
[3] Univ Cambridge, Cambridge Ctr Gallium Nitride, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[4] Univ Strathclyde, Dept Phys, SUPA, Glasgow G1 1XQ, Lanark, Scotland
[5] Univ Bristol, Ctr Device Thermog & Reliabil, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[6] Univ Warwick, Ctr Diamond Sci & Technol, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
GaN-on-diamond; thermal boundary resistance; thermal management; GaN; diamond; SiC; AlGaN; AlN; CONDUCTIVITY; DEPOSITION; SILICON; HEAT;
D O I
10.1021/acsami.0c10129
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Integrating diamond with GaN high electron mobility transistors (HEMTs) improves thermal management, ultimately increasing the reliability and performance of high-power high-frequency radio frequency amplifiers. Conventionally, an amorphous interlayer is used before growing polycrystalline diamond onto GaN in these devices. This layer contributes significantly to the effective thermal boundary resistance (TBReff) between the GaN HEMT and the diamond, reducing the benefit of the diamond heat spreader. Replacing the amorphous interlayer with a higher thermal conductivity crystalline material would reduce TBReff and help to enable the full potential of GaN-on-diamond devices. In this work, a crystalline Al-0.32 Ga0.68N interlayer has been integrated into a GaN/AlGaN HEMT device epitaxy. Two samples were studied, one with diamond grown directly on the AlGaN interlayer and another incorporating a thin crystalline SiC layer between AlGaN and diamond. The TBReff, measured using transient thermoreflectance, was improved for the sample with SiC (30 +/- 5 m(2) K GW(-1)) compared to the sample without (107 +/- 44 m(2) K GW(-1)). The reduced TBReff is thought to arise from improved adhesion between SiC and the diamond compared to the diamond directly on AlGaN because of an increased propensity for carbide bond formation between SiC and the diamond. The stronger carbide bonds aid transmission of phonons across the interface, improving heat transport.
引用
收藏
页码:54138 / 54145
页数:8
相关论文
共 50 条
  • [1] Contactless Thermal Boundary Resistance Measurement of GaN-on-Diamond Wafers
    Pomeroy, James W.
    Simon, Roland Baranyai
    Sun, Huarui
    Francis, Daniel
    Faili, Firooz
    Twitchen, Daniel J.
    Kuball, Martin
    IEEE ELECTRON DEVICE LETTERS, 2014, 35 (10) : 1007 - 1009
  • [2] Low Thermal Boundary Resistance Interfaces for GaN-on-Diamond Devices
    Yates, Luke
    Anderson, Jonathan
    Gu, Xing
    Lee, Cathy
    Bai, Tingyu
    Mecklenburg, Matthew
    Aoki, Toshihiro
    Goorsky, Mark S.
    Kuball, Martin
    Piner, Edwin L.
    Graham, Samuel
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (28) : 24302 - 24309
  • [3] Impact of thermal boundary resistance on the thermal design of GaN-on-Diamond HEMTs
    Guo, Huaixin
    Kong, Yuechan
    Chen, Tangsheng
    2019 IEEE 69TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2019, : 1842 - 1847
  • [4] The Effect of Interlayer Microstructure on the Thermal Boundary Resistance of GaN-on-Diamond Substrate
    Jia, Xin
    Huang, Lu
    Sun, Miao
    Zhao, Xia
    Wei, Junjun
    Li, Chengming
    COATINGS, 2022, 12 (05)
  • [5] The influence of dielectric layer on the thermal boundary resistance of GaN-on-diamond substrate
    Jia, Xin
    Wei, Jun-jun
    Kong, Yuechan
    Li, Cheng-ming
    Liu, Jinlong
    Chen, Liangxian
    Sun, Fangyuan
    Wang, Xinwei
    SURFACE AND INTERFACE ANALYSIS, 2019, 51 (07) : 783 - 790
  • [6] Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications
    Sun, Huarui
    Simon, Roland B.
    Pomeroy, James W.
    Francis, Daniel
    Faili, Firooz
    Twitchen, Daniel J.
    Kuball, Martin
    APPLIED PHYSICS LETTERS, 2015, 106 (11)
  • [7] Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond
    Waller, William M.
    Pomeroy, James W.
    Field, Daniel
    Smith, Edmund J. W.
    May, Paul W.
    Kuball, Martin
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2020, 35 (09)
  • [8] Thermal Interface Resistance Measurements for GaN-on-Diamond Composite Substrates
    Cho, Jungwan
    Won, Yoonjin
    Francis, Daniel
    Asheghi, Mehdi
    Goodson, Kenneth E.
    2014 IEEE COMPOUND SEMICONDUCTOR INTEGRATED CIRCUIT SYMPOSIUM (CSICS): INTEGRATED CIRCUITS IN GAAS, INP, SIGE, GAN AND OTHER COMPOUND SEMICONDUCTORS, 2014,
  • [9] A novel strategy for GaN-on-diamond device with a high thermal boundary conductance
    Mu, Fengwen
    Xu, Bin
    Wang, Xinhua
    Gao, Runhua
    Huang, Sen
    Wei, Ke
    Takeuchi, Kai
    Chen, Xiaojuan
    Yin, Haibo
    Wang, Dahai
    Yu, Jiahan
    Suga, Tadatomo
    Shiomi, Junichiro
    Liu, Xinyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 905
  • [10] Temperature-Dependent Thermal Resistance of GaN-on-Diamond HEMT Wafers
    Sun, Huarui
    Pomeroy, James W.
    Simon, Roland B.
    Francis, Daniel
    Faili, Firooz
    Twitchen, Daniel J.
    Kuball, Martin
    IEEE ELECTRON DEVICE LETTERS, 2016, 37 (05) : 621 - 624