The as-cast Ti44Al6Nb1.0Cr2.0V alloy master ingot was prepared by vacuum consumable melting technology. Some bars were cut from this ingot and they were directionally solidified by cold crucible under different pulling velocities. The samples could be well directionally solidified when the power (P) was 45 kW and the pulling velocity (V) was 8.33 mu m/s or 11.67 mu m/s. The results show that the interlamellar space of the directionally solidified samples decreases from the average 1650 nm of as-cast to less than 565 nm and is more homogeneous. The microcrack in the master ingot can be eliminated completely and the room temperature (RT) tensile property is also improved after cold crucible directional solidification (CCDS). The ultimate tensile strength (UTS) is 602.5 MPa and the elongation is 1.20% as P=45 kW and V=11.67 mu m/s, compared with as-cast 499 MPa of UTS and 0.53% of elongation. Trans-granular and trans-lamella fractures are predominant modes. The relationship between CCDS interlamellar space (d) and the pulling velocity can be described as d = 1783.2V(-0.554) and r(1)(2) = 0.972, where r(1)(2) is the corresponding regression coefficient. The CCDS interlamellar space and nanoindentation hardness (H-N) in the lamella region can be described as H-N = 17.95d(-0.145) and r(2)(2) = 0.986, and they are changed as H-N' = 14.03d'(-0 104) and r(3)(2) = 0.975 when the cast condition is considered. The nanoindentation hardness of the B-2 phase and the block gamma phase are about 8.89 GPa and 8.15 GPa, respectively; both of them keep almost the same in different conditions. (C) 2014 Elsevier B.V. All rights reserved.
机构:
Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
Chen Ruirun
Wang Jichao
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
CSIC, Tianjin Repair Technol Res Inst, Tianjin 300456, Peoples R ChinaHarbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
Wang Jichao
Ma Tengfei
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
Ma Tengfei
Guo Jingjie
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
Guo Jingjie
Ding Hongsheng
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
Ding Hongsheng
Su Yanqing
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
Su Yanqing
Fu Hengzhi
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China