Computing the rupture degrees of graphs

被引:0
|
作者
Li, FW [1 ]
Li, XL [1 ]
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The rupture degree of a noncomplete connected graph G is defined by r(G) = max{w(G - X) - \X\ - m(G - X) : X subset of V (G), w (G - X) greater than or equal to 2}, where w (G - X) denotes the number of components in the graph G - X. For a complete graph K-n, we define r (K-n) = 1 - n. This parameter can be used to measure the vulnerability of a graph. To some extent, it represents a trade-off between the amount of work done to damage the network and how badly the network is damaged. In this paper we prove that the problem of computing the rupture degree of a graph is NP-complete. We obtain the rupture degree of the Cartesian product of some special graphs and also give the exact values or bounds for the rupture degrees of Harary graphs.
引用
收藏
页码:368 / 373
页数:6
相关论文
共 50 条
  • [1] COMPUTING THE RUPTURE DEGREE IN COMPOSITE GRAPHS
    Aytac, Aysun
    Odabas, Zeynep Nihan
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2010, 21 (03) : 311 - 319
  • [2] Computing Severi degrees with long-edge graphs
    Florian Block
    Susan Jane Colley
    Gary Kennedy
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 625 - 647
  • [3] Computing Severi degrees with long-edge graphs
    Block, Florian
    Colley, Susan Jane
    Kennedy, Gary
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (04): : 625 - 647
  • [4] Orientations of graphs and minimum degrees of graphs
    Lakshmi, R.
    [J]. ARS COMBINATORIA, 2010, 97A : 161 - 167
  • [5] Degrees in link graphs of regular graphs
    Benjamini, Itai
    Haslegrave, John
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02):
  • [6] Rupture degree of graphs
    Li, YK
    Zhang, SG
    Li, XL
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (07) : 793 - 803
  • [7] Classifying Graphs by Degrees
    Hedetniemi, Jason T.
    Hedetniemi, Sandra M.
    Hedetniemi, Stephen T.
    Lewis, Thomas M.
    [J]. UTILITAS MATHEMATICA, 2017, 104 : 333 - 349
  • [8] ANALYZING GRAPHS BY DEGREES
    Hedetniemi, Jason T.
    Hedetniemi, Sandra M.
    Hedetniemi, Stephen T.
    Lewis, Thomas M.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (04) : 359 - 375
  • [9] Masters Degrees in Computing
    Cassel, Lillian N.
    Davies, Gordon
    Seidman, Stephen
    [J]. ITICSE 2009: PROCEEDING OF THE 2009 ACM SIGSE ANNUAL CONFERENCE ON INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION, 2009, : 366 - 366
  • [10] COMPUTING DEGREES OF UNSOLVABILITY
    ROGERS, H
    [J]. MATHEMATISCHE ANNALEN, 1959, 138 (02) : 125 - 140