Impact of the neoclassical distribution function on turbulent impurity and momentum fluxes: fluid model and gyrokinetic simulations

被引:12
|
作者
Manas, P. [1 ]
Hornsby, W. A. [1 ]
Angioni, C. [1 ]
Camenen, Y. [2 ]
Peeters, A. G. [3 ]
机构
[1] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[2] Aix Marseille Univ, CNRS, PIIM UMR7345, F-13397 Marseille, France
[3] Univ Bayreuth, Dept Phys, D-95440 Bayreuth, Germany
关键词
gyrokinetics; tokamak; turbulent impurity transport; turbulent momentum transport; neoclassical background; TRANSPORT; CONVECTION;
D O I
10.1088/1361-6587/aa52ea
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The impact of the neoclassical background on turbulent impurity transport is investigated by means of gyrokinetic simulations supported by fluid equations. The latter are derived, using a Laguerre polynomials expansion of the first order neoclassical distribution function, and analytical expressions of the turbulent momentum flux and impurity transport coefficients are assessed. Comparisons of gyrokinetic simulations including this neoclassical background (coupling between the codes GKW and NEO) and the fluid model are used to identify the main mechanisms behind the modification of the turbulent transport channels and benchmark the numerical implementation. These mechanisms include a modification of the parallel dynamics of the main ions and direct contributions stemming from the asymmetry in the parallel velocity space of the neoclassical distribution function. The latter which is found dominant for turbulent impurity transport, increases with increasing collisionality, R/L-Ti, R/L-n, impurity mass, safety factor and aspect ratio. These contributions to momentum and impurity fluxes are also found to depend on the directions of the toroidal magnetic field and plasma current.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Impact of a hollow density profile on turbulent particle fluxes: Gyrokinetic and fluid simulations
    Tegnered, D.
    Oberparleiter, M.
    Strand, P.
    Nordman, H.
    [J]. PHYSICS OF PLASMAS, 2017, 24 (07)
  • [2] Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport
    Esteve, D.
    Sarazin, Y.
    Garbet, X.
    Grandgirard, V.
    Breton, S.
    Donnel, P.
    Asahi, Y.
    Bourdelle, C.
    Dif-Pradalier, G.
    Ehrlacher, C.
    Emeriau, C.
    Ghendrih, Ph.
    Gillot, C.
    Latu, G.
    Passeron, C.
    [J]. NUCLEAR FUSION, 2018, 58 (03)
  • [3] Fluid and gyrokinetic simulations of impurity transport at JET
    Nordman, H.
    Skyman, A.
    Strand, P.
    Giroud, C.
    Jenko, F.
    Merz, F.
    Naulin, V.
    Tala, T.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (10)
  • [4] Impact of magnetic ripple on neoclassical equilibrium in gyrokinetic simulations
    Varennes, R.
    Garbet, X.
    Vermare, L.
    Sarazin, Y.
    Dif-Pradalier, G.
    Grandgirard, V.
    Ghendrih, P.
    Donnel, P.
    Peret, M.
    Obrejan, K.
    Bourne, E.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (03)
  • [5] Fluid simulations of turbulent impurity transport
    Dubuit, N.
    Garbet, X.
    Parisot, T.
    Guirlet, R.
    Bourdelle, C.
    [J]. PHYSICS OF PLASMAS, 2007, 14 (04)
  • [6] Intrinsic Toroidal Rotation Driven by Turbulent and Neoclassical Processes in Tokamak Plasmas from Global Gyrokinetic Simulations
    Zhu, Hongxuan
    Stoltzfus-Dueck, T.
    Hager, R.
    Ku, S.
    Chang, C.S.
    [J]. Physical Review Letters, 2024, 133 (02)
  • [7] Neoclassical and turbulent E x B flows in flux-driven gyrokinetic simulations of Ohmic tokamak plasmas
    Niskala, P.
    Gurchenko, A. D.
    Gusakov, E. Z.
    Altukhov, A. B.
    Esipov, L. A.
    Chone, L.
    Kiviniemi, T. P.
    Leerink, S.
    [J]. NUCLEAR FUSION, 2018, 58 (11)
  • [8] Impact of Eddy Characteristics on Turbulent Heat and Momentum Fluxes in the Urban Roughness Sublayer
    Zou, Jun
    Zhou, Bowen
    Sun, Jianning
    [J]. BOUNDARY-LAYER METEOROLOGY, 2017, 164 (01) : 39 - 62
  • [9] Impact of Eddy Characteristics on Turbulent Heat and Momentum Fluxes in the Urban Roughness Sublayer
    Jun Zou
    Bowen Zhou
    Jianning Sun
    [J]. Boundary-Layer Meteorology, 2017, 164 : 39 - 62
  • [10] A gyrokinetic ion zero electron inertia fluid electron model for turbulence simulations
    Chen, Y
    Parker, S
    [J]. PHYSICS OF PLASMAS, 2001, 8 (02) : 441 - 446