On the penalty-projection method for the Navier-Stokes equations with the MAC mesh

被引:20
|
作者
Fevriere, C. [1 ]
Laminie, J. [1 ]
Poullet, P. [1 ]
Angot, Ph. [2 ]
机构
[1] Univ Antilles Guyane, GRIMAAG, Campus Fouillole, F-97159 Pointe A Pitre, Guadeloupe, France
[2] Univ Aix Marseille 1, LATP, Ctr Math & Informat, F-13453 Marseille 13, France
关键词
Projection methods; Penalty-projection method; Incompressible flows; Navier-Stokes equations; MAC scheme; APPROXIMATION; CONVERGENCE; SCHEME; TIME;
D O I
10.1016/j.cam.2008.08.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the time-dependent Navier-Stokes equations (NSE) with Dirichlet boundary conditions on the whole domain or, on a part of the domain and open boundary conditions on the other part. It is shown numerically that combining the penalty-projection method with spatial discretization by the Marker And Cell scheme (MAC) yields reasonably good results for solving the above-mentioned problem. The scheme which has been introduced combines the backward difference formula of second-order (BDF2, namely Gear's scheme) for the temporal approximation, the second-order Richardson extrapolation for the nonlinear term, and the penalty-projection to split the velocity and pressure unknowns. Similarly to the results obtained for other projection methods, we estimate the errors for the velocity and pressure in adequate norms via the energy method. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:228 / 245
页数:18
相关论文
共 50 条
  • [1] A Spectacular Vector Penalty-Projection Method for Darcy and Navier-Stokes Problems
    Angot, Philippe
    Caltagirone, Jean-Paul
    Fabrie, Pierre
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 39 - +
  • [2] Time-discretization of stochastic 2-D Navier-Stokes equations with a penalty-projection method
    Hausenblas, Erika
    Randrianasolo, Tsiry A.
    [J]. NUMERISCHE MATHEMATIK, 2019, 143 (02) : 339 - 378
  • [3] ON ERROR-ESTIMATES OF SOME HIGHER-ORDER PROJECTION AND PENALTY-PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS
    SHEN, J
    [J]. NUMERISCHE MATHEMATIK, 1992, 62 (01) : 49 - 73
  • [4] The Penalty Method for the Navier-Stokes Equations
    Heinrich, J. C.
    Vionnet, C. A.
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 1995, 2 (02) : 51 - 65
  • [5] A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems
    Angot, Philippe
    Caltagirone, Jean-Paul
    Fabrie, Pierre
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 1681 - 1688
  • [6] Time-discretization of stochastic 2-D Navier–Stokes equations with a penalty-projection method
    Erika Hausenblas
    Tsiry A. Randrianasolo
    [J]. Numerische Mathematik, 2019, 143 : 339 - 378
  • [7] A MODIFIED PENALTY METHOD FOR STOKES EQUATIONS AND ITS APPLICATIONS TO NAVIER-STOKES EQUATIONS
    LIN, SY
    CHIN, YS
    WU, TM
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (01): : 1 - 19
  • [8] PENALTY SOLUTION OF THE NAVIER-STOKES EQUATIONS
    DEBREMAECKER, JC
    [J]. COMPUTERS & FLUIDS, 1987, 15 (03) : 275 - 280
  • [9] Improvements to a Fast Projection Method for the Navier-Stokes Equations
    Karam, Mokbel
    Saad, Tony
    [J]. AIAA JOURNAL, 2022, 60 (08) : 5028 - 5030
  • [10] A vector projection method for solving the Navier-Stokes equations
    Caltagirone, JP
    Breil, J
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (11): : 1179 - 1184