conserved phase field models;
Cahn-Hilliard equation;
dynamic boundary condition;
maximal regularity;
Lojasiewicz-Simon inequality;
convergence to steady states;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we investigate the nonlinear Cahn-Hilliard equation with nonconstant temperature and dynamic boundary conditions. We show maximal L-p-regularity for this problem with inhomogeneous boundary data. Furthermore we show global existence and use the Lojasiewicz-Simon inequality to show that each solution converges to a steady state as time tends to infinity, as soon as the potential Phi and the latent heat lambda satisfy certain growth conditions.
机构:
Univ Poitiers, Lab Math & Applicat, UMR CNRS 7348, SP2MI, Blvd Marie & Pierre Curie Teleport 2, Futuroscope 86962, FranceUniv Poitiers, Lab Math & Applicat, UMR CNRS 7348, SP2MI, Blvd Marie & Pierre Curie Teleport 2, Futuroscope 86962, France
Miranville, Alain
Wu, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Handan Rd 220, Shanghai 200433, Peoples R ChinaUniv Poitiers, Lab Math & Applicat, UMR CNRS 7348, SP2MI, Blvd Marie & Pierre Curie Teleport 2, Futuroscope 86962, France
机构:
Dipartimento di Matematica,Università di PaviaDipartimento di Matematica,Università di Pavia
Gianni GILARDI
Alain MIRANVILLE
论文数: 0引用数: 0
h-index: 0
机构:
Laboratoire de Mathématiques et Applications, Université de Poitiers,Boulevard Marie et Pierre Curie-Téléport 2,86962 Chasseneuil Futuroscope Cedex,FranceDipartimento di Matematica,Università di Pavia
Alain MIRANVILLE
Giulio SCHIMPERNA
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento di Matematica,Università di PaviaDipartimento di Matematica,Università di Pavia