Bounded finite-time stabilization of the prey - predator model via Korobov's controllability function

被引:4
|
作者
Choque-Rivero, A. E. [1 ]
Ornelas-Tellez, F. [1 ]
机构
[1] Univ Michoacana San Nicolas Hidalgo UMSNH, Morelia 58030, Michoacan, Mexico
关键词
finite-time stabilization; Korobov's controllability function; bounded control input; prey; predator model;
D O I
10.18500/1816-9791-2021-21-1-76-87
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of finite-time stabilization for a Leslie-Gower prey - predator system through a bounded control input is solved. We use Korobov's controllability function. The trajectory of the resulting motion is ensured for fulfilling a physical restriction that prey and predator cannot achieve negative values. For this purpose, a certain ellipse depending on given data and the equilibrium point of the considered system is constructed. Simulation results show the effectiveness of the proposed control methodology.
引用
收藏
页码:76 / 87
页数:12
相关论文
共 50 条
  • [1] Bounded finite-time stabilization of the prey - predator model via Korobov's controllability function
    Choque-Rivero, Abdon E.
    Ornelas-Tellez, Fernando
    [J]. IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2021, 21 (01): : 76 - 87
  • [2] Extended set of solutions of a bounded finite-time stabilization problem via the controllability function
    Choque-Rivero, A. E.
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2021, 38 (04) : 1174 - 1188
  • [3] Bounded finite-time stabilization of the Rossler system
    Choque-Rivero, Abdon E.
    Cruz Mullisaca, Efrain
    Gomez Orozco, Blanca de Jesus
    [J]. 2019 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2019), 2019,
  • [4] Stabilization of Prey Predator Model via Feedback Control
    Singh, Anuraj
    [J]. APPLIED ANALYSIS IN BIOLOGICAL AND PHYSICAL SCIENCES, 2016, 186 : 177 - 186
  • [5] Finite-time stabilization and energy consumption estimation for delayed neural networks with bounded activation function
    Chen, Chongyang
    Zhu, Song
    Wang, Min
    Yang, Chunyu
    Zeng, Zhigang
    [J]. NEURAL NETWORKS, 2020, 131 : 163 - 171
  • [6] Continuous, bounded, finite-time stabilization of the translational and rotational double integrators
    Bhat, SP
    Bernstein, DS
    [J]. PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 1996, : 185 - 190
  • [7] Finite-time stabilization via dynamic output feedback
    Amato, F
    Ariola, M
    Cosentino, C
    [J]. AUTOMATICA, 2006, 42 (02) : 337 - 342
  • [8] Finite-Time Stabilization via Sliding Mode Control
    Song, Jun
    Niu, Yugang
    Zou, Yuanyuan
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (03) : 1478 - 1483
  • [9] On Finite-time Stabilization via Relay Feedback Control
    Polyakov, Andrey
    Hetel, Laurentiu
    [J]. 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 4098 - 4102
  • [10] Korobov's Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem
    Choque-Rivero, A. E.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2023, 19 (03) : 556 - 586