Control and gating of kinesin-microtubule motility on electrically heated thermo-chips

被引:7
|
作者
Ramsey, Laurence [1 ]
Schroeder, Viktor [2 ,3 ]
van Zalinge, Harm [1 ]
Berndt, Michael [3 ]
Korten, Till [2 ,3 ]
Diez, Stefan [2 ,3 ]
Nicolau, Dan V. [1 ]
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
[2] Tech Univ Dresden, B CUBE Ctr Mol Bioengn, D-01307 Dresden, Germany
[3] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
关键词
Nanodevices; Molecular motors; Thermo-responsive polymer; Poly(N-isopropylacrylamide); Microtubules; Kinesin; PROTEINS; SURFACES; ACTIN; CARGO;
D O I
10.1007/s10544-014-9848-2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
First lab-on-chip devices based on active transport by biomolecular motors have been demonstrated for basic detection and sorting applications. However, to fully employ the advantages of such hybrid nanotechnology, versatile spatial and temporal control mechanisms are required. Using a thermo-responsive polymer, we demonstrated a temperature controlled gate that either allows or disallows the passing of microtubules through a topographically defined channel. The gate is addressed by a narrow gold wire, which acts as a local heating element. It is shown that the electrical current flowing through a narrow gold channel can control the local temperature and as a result the conformation of the polymer. This is the first demonstration of a spatially addressable gate for microtubule motility which is a key element of nanodevices based on biomolecular motors.
引用
收藏
页码:459 / 463
页数:5
相关论文
共 11 条
  • [1] Control and gating of kinesin-microtubule motility on electrically heated thermo-chips
    Laurence Ramsey
    Viktor Schroeder
    Harm van Zalinge
    Michael Berndt
    Till Korten
    Stefan Diez
    Dan V. Nicolau
    Biomedical Microdevices, 2014, 16 : 459 - 463
  • [2] A dynamical model of kinesin-microtubule motility assays
    Gibbons, F
    Chauwin, JF
    Despósito, M
    José, JV
    BIOPHYSICAL JOURNAL, 2001, 80 (06) : 2515 - 2526
  • [3] The effects of osmolytes on in vitro kinesin-microtubule motility assays
    VanDelinder, Virginia
    Sickafoose, Ian
    Imam, Zachary I.
    Ko, Randy
    Bachand, George D.
    RSC ADVANCES, 2020, 10 (70) : 42810 - 42815
  • [4] Highly sensitive kinesin-microtubule motility assays using SLIM
    Kandel, Mikhail
    Teng, Kai Wen
    Selvin, Paul R.
    Popescu, Gabriel
    QUANTITATIVE PHASE IMAGING II, 2016, 9718
  • [5] Electrical control of kinesin-microtubule motility using a transparent functionalized-graphene substrate
    Kim, Eunji
    Byun, Kyung-Eun
    Choi, Dong Shin
    Lee, Dong Jun
    Cho, Duck Hyung
    Lee, Byung Yang
    Yang, Heejun
    Heo, Jinseong
    Chung, Hyun-Jong
    Seo, Sunae
    Hong, Seunghun
    NANOTECHNOLOGY, 2013, 24 (19)
  • [6] Photo-control of kinesin-microtubule motility using caged peptides derived from the kinesin C-terminus domain
    Nomura, Akiko
    Uyeda, Taro Q. P.
    Yumoto, Noboru
    Tatsu, Yoshiro
    CHEMICAL COMMUNICATIONS, 2006, (34) : 3588 - 3590
  • [7] The Relationship of Motor Attachment Geometry and Velocity Fluctuations in Kinesin-Microtubule Gliding Motility Assays
    Dumont, Emmanuel L.
    Ghazi, Andrew
    Hess, Henry
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 368A - 369A
  • [8] Surface-limited reactions for spatial control of kinesin-microtubule motility assays using indirect irradiation of an electron beam
    Miyazako, Hiroki
    Kawamura, Ryuzo
    Hoshino, Takayuki
    BIOMICROFLUIDICS, 2022, 16 (06)
  • [9] A non-nucleoside triphosphate for powering kinesin-microtubule motility with photo-tunable velocity
    Perur, Nishad
    Yahara, Masao
    Kamei, Takashi
    Tamaoki, Nobuyuki
    CHEMICAL COMMUNICATIONS, 2013, 49 (85) : 9935 - 9937
  • [10] Class I HDACs control a JIP1-dependent pathway for kinesin-microtubule binding in cardiomyocytes
    Blakeslee, Weston W.
    Lin, Ying-Hsi
    Stratton, Matthew S.
    Tatman, Philip D.
    Hu, Tianjing
    Ferguson, Bradley S.
    McKinsey, Timothy A.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2017, 112 : 74 - 82