Ultraspherical moments on a set of disjoint intervals

被引:0
|
作者
AlSabi, Hashem [1 ]
Griffin, James [2 ]
机构
[1] Univ Sci & Technol, Lille 1, France
[2] Amer Univ Sharjah, Dept Math, Sharjah, U Arab Emirates
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2019年 / 30卷 / 04期
关键词
Ultraspherical moments; Pell equations; Hypergeometric function;
D O I
10.1016/j.indag.2019.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Moment evaluations are important for the study of non-classical orthogonal polynomial systems for which explicit representations are not known. In this paper we compute, in terms of the hypergeometric function, the moments associated with a generalized ultraspherical weight on a collection of intervals with two symmetric gaps. These moments, parametrized by the endpoints of the gaps, are identified as a one parameter deformation between the full range ultraspherical moments and the half range ultraspherical moments. (C) 2019 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:596 / 609
页数:14
相关论文
共 50 条
  • [1] Entanglement entropy of disjoint spacetime intervals in causal set theory
    Duffy, Callum F.
    Jones, Joshua Y. L.
    Yazdi, Yasaman K.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (07)
  • [2] COVERING BY DISJOINT CLOSED INTERVALS
    MUNKRES, J
    WAGON, S
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (05): : 336 - 337
  • [3] DEGREE OF UNIFORM APPROXIMATION ON DISJOINT INTERVALS
    CHUI, CK
    HASSON, M
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1983, 105 (02) : 291 - 297
  • [4] MARKOV AND BERNSTEIN INEQUALITIES ON DISJOINT INTERVALS
    BORWEIN, PB
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (01): : 201 - 209
  • [5] NOTE ON A POLYNOMIAL SET RELATED TO THE ULTRASPHERICAL POLYNOMIALS
    SINGH, SN
    SINGH, LS
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1991, 14 (12): : 471 - 472
  • [6] Set-to-Set Disjoint Paths in Tori
    Kaneko, Keiichi
    Bossard, Antoine
    [J]. 2016 FOURTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2016, : 91 - 97
  • [7] Concurrent disjoint set union
    Jayanti, Siddhartha, V
    Tarjan, Robert E.
    [J]. DISTRIBUTED COMPUTING, 2021, 34 (06) : 413 - 436
  • [8] Concurrent disjoint set union
    Siddhartha V. Jayanti
    Robert E. Tarjan
    [J]. Distributed Computing, 2021, 34 : 413 - 436
  • [9] Multi-charged moments and symmetry-resolved Rényi entropy of free compact boson for multiple disjoint intervals
    Gaur, Himanshu
    Yajnik, Urjit A.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (01)
  • [10] Set-to-set disjoint paths in a folded hypercube
    Ichida, Hiroyuki
    Kaneko, Keiichi
    [J]. THEORETICAL COMPUTER SCIENCE, 2024, 1000