Modeling of Anisotropic Magnetic Objects by Volume Integral Equation Methods

被引:0
|
作者
Sun, Lin E. [1 ]
Chew, Weng C. [2 ]
机构
[1] Youngstown State Univ, Dept Elect & Comp Engn, Youngstown, OH 44512 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
关键词
Anisotropic magnetics; augmented volume integral equation (A-VIE); method of moments; volume integral equation (VIE); ELECTROMAGNETIC SCATTERING;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the modeling of electromagnetic scattering from objects with magnetic anisotropy. We study the solutions of both the volume integral equation (VIE) method and augmented volume integral equation (A-VIE) method. For the VIE method, it is built from the 3D vector wave equation for electric field only. For the A-VIE method, it is built from 3D vector wave equation for both electric and magnetic fields. Numerical results show that the A-VIE method has better accuracy and convergence for magnetic objects compared to the VIE method.
引用
收藏
页码:1256 / 1261
页数:6
相关论文
共 50 条
  • [1] Electromagnetic modeling of inhomogeneous and anisotropic structures by volume integral equation methods
    Sun, Lin E.
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2015, 25 (04) : 536 - 548
  • [2] Computations of Electromagnetic Wave Scattering from Anisotropic and Inhomogeneous Objects using Volume Integral Equation Methods
    Sun, L. E.
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2015, : 1820 - 1821
  • [3] Computation of Scattered Fields from Inhomogeneous Objects by Volume Integral Equation Methods
    Sun, L. E.
    [J]. 2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 3196 - 3196
  • [4] Volume Integral Equation Methods for Axisymmetric Problems With Conductive and Magnetic Media
    Torchio, R.
    Voltolina, D.
    Moro, F.
    Alotto, P.
    Bettini, P.
    Meunier, G.
    Guichon, J-M
    Chadebec, O.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (01)
  • [5] Reconstruction of Anisotropic Dielectric Objects Based on Integral Equation Method
    Xu, Qing
    Du, Xi Yuan
    Lu, Ze Yuan
    Zhang, Yi Fan
    Tong, Mei Song
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 1677 - 1678
  • [6] Volume Integral Equation Combined With ODDM for Analysis of EM Scattering From Inhomogeneous Anisotropic Nonmagnetic Dielectric Objects
    Chen, Shu-Wen
    Zhou, Hou-Xing
    Kong, Wei-Bin
    Hong, Wei
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM), 2015, : 294 - 296
  • [7] Discretization of Volume Integral Equation Formulations for Extremely Anisotropic Materials
    Markkanen, Johannes
    Yla-Oijala, Pasi
    Sihvola, Ari
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (11) : 5195 - 5202
  • [8] Meshfree Solutions of Volume Integral Equations for Electromagnetic Scattering by Anisotropic Objects
    Tong, Mei Song
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (09) : 4249 - 4258
  • [9] A Frequency Stable Volume Integral Equation Method for Anisotropic Scatterers
    Forestiere, Carlo
    Miano, Giovanni
    Rubinacci, Guglielmo
    Tamburrino, Antonello
    Udpa, Lalita
    Ventre, Salvatore
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (03) : 1224 - 1235
  • [10] SOLVABILITY OF A VOLUME INTEGRAL EQUATION FORMULATION FOR ANISOTROPIC ELASTODYNAMIC SCATTERING
    Bonnet, Marc
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2016, 28 (02) : 169 - 203