Determining modes for the 3D Navier-Stokes equations

被引:8
|
作者
Cheskidov, Alexey [1 ]
Dai, Mimi [2 ]
Kavlie, Landon [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Appl Math Stat & Comp Sci, Chicago, IL 60607 USA
关键词
Navier-Stokes equations; Determining modes; Global attractor; EULER EQUATIONS; VISCOUS-FLUID; TURBULENCE; ATTRACTORS; DIMENSION; NUMBER;
D O I
10.1016/j.physd.2017.11.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a determining wavenumber for the forced 3D Navier-Stokes equations (NSE) defined for each individual solution. Even though this wavenumber blows up if the solution blows up, its time average is uniformly bounded for all solutions on the weak global attractor. The bound is compared to Kolmogorov's dissipation wavenumber and the Grashof constant. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (03): : 271 - 274
  • [2] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (04): : 473 - 517
  • [3] Navier-Stokes equations on the β-plane: Determining modes and nodes
    Miyajima, N.
    Wirosoetisno, D.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2019, 386 : 31 - 37
  • [4] 3D STEADY COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Pokorny, Milan
    Mucha, Piotr B.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (01): : 151 - 163
  • [5] REGULARITY CONDITIONS FOR THE 3D NAVIER-STOKES EQUATIONS
    Fan, Jishan
    Gao, Hongjun
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2009, 67 (01) : 195 - 199
  • [6] Asymptotic stability for the 3D Navier-Stokes equations
    Zhou, Y
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) : 323 - 333
  • [7] On the energy equality for the 3D Navier-Stokes equations
    Berselli, Luigi C.
    Chiodaroli, Elisabetta
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
  • [8] Partial Regularity for the 3D Navier-Stokes Equations
    Robinson, James C.
    [J]. MATHEMATICAL ANALYSIS OF THE NAVIER-STOKES EQUATIONS, 2020, 2254 : 147 - 192
  • [9] Exact Solution of 3D Navier-Stokes Equations
    Koptev, Alexander, V
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (03): : 306 - 313
  • [10] On the 3D Navier-Stokes equations with regularity in pressure
    Liu, Qiao
    Dai, Guowei
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 497 - 507