The Saudi Arabian climate, generally speaking, is known to be hot and arid. Even with its extensive energy resources, Saudi Arabia is not immune to the demands of climate change. Over 50% of the country's electricity is consumed by residential buildings. For economic, fiscal, and environmental reasons, government policy is to stem the profligate use of finite energy resources. It is incumbent on the Saudi building industry to adapt to changing conditions by re-assessing the choice of materials and the design and lay-out of new buildings to help quell demands for air-conditioning during the hotter parts of the year. Throughout the country, electricity consumption doubles in the summer months. Given this situation, this study explores the indoor thermal environment typical of residential buildings. The study selected one house located in a hot dry climatic region as a case study. The features of the house were assessed to determine the permeable features that require improvement. Two main methods used to evaluate indoor thermal conditions are physical measurements and computer modelling. Instruments were used to monitor the house during both summer and winter months. Thermal analysis software was used to model the thermal properties of the house for two purposes, first, to assess the thermal performance of the case-study building, and second, to identify areas in which improvements could be made using proposed alternative materials. Different parts of the building were simulated using different material combinations to achieve the optimal cooling reduction. The findings suggest that the cooling load can be reduced of up to 56.4%. Consequently, the intensity of the proposed annual cooling for the chosen house was predicted to be 79.7 kWh/m(2)/y.