The module Dfs for locally quasi-homogeneous free divisors

被引:32
|
作者
Calderón-Moreno, F [1 ]
Narváez-Macarro, L [1 ]
机构
[1] Univ Seville, Dept Algebra, Fac Matemat, E-41080 Seville, Spain
关键词
de Rham complex; D-module; free divisor; ideal of linear type; Koszul complex; locally quasi-homogeneous; Spencer complex;
D O I
10.1023/A:1020228824102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find explicit free resolutions for the D-modules Df(s) and D[s] f(s)/ D[s]f(s+1), where f is a reduced equation of a locally quasi-homogeneous free divisor. These results are based on the fact that every locally quasi-homogeneous free divisor is Koszul free, which is also proved in this paper.
引用
收藏
页码:59 / 74
页数:16
相关论文
共 50 条
  • [1] Chern classes of logarithmic vector fields for locally quasi-homogeneous free divisors
    Liao, Xia
    [J]. MATHEMATICAL RESEARCH LETTERS, 2018, 25 (03) : 891 - 904
  • [2] Scattering of light from quasi-homogeneous sources by quasi-homogeneous media
    Visser, TD
    Fischer, DG
    Wolf, E
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (07) : 1631 - 1638
  • [3] HOMOGENEOUS AND QUASI-HOMOGENEOUS FIELDS
    WOLF, E
    CARTER, WH
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1983, 73 (12) : 1874 - 1874
  • [4] Propagation of the light generated by quasi-homogeneous sources through quasi-homogeneous media
    李伽
    陈延如
    赵琦
    周木春
    徐实学
    [J]. Optoelectronics Letters, 2010, 6 (01) : 69 - 71
  • [5] THE CANONICAL MODULE OF A QUASI-HOMOGENEOUS NORMAL AFFINE SL(2)-VARIETY
    PANYUSHEV, DI
    [J]. MATHEMATICS OF THE USSR-SBORNIK, 1992, 73 (02): : 569 - 578
  • [6] ON QUASI-HOMOGENEOUS COPULAS
    Mayor, Gaspar
    Mesiar, Radko
    Torrens, Joan
    [J]. KYBERNETIKA, 2008, 44 (06) : 745 - 756
  • [7] Propagation of the light generated by quasi-homogeneous sources through quasi-homogeneous media
    Li J.
    Chen Y.-R.
    Zhao Q.
    Zhou M.-C.
    Xu S.-X.
    [J]. Optoelectronics Letters, 2010, 6 (1) : 69 - 71
  • [8] THE STRUCTURE OF THE CANONICAL MODULE AND THE GORENSTEIN PROPERTY FOR SOME QUASI-HOMOGENEOUS VARIETIES
    PANYUSHEV, DI
    [J]. MATHEMATICS OF THE USSR-SBORNIK, 1988, 137 (1-2): : 81 - 95
  • [9] On the recognition problem of quasi-homogeneous locally nilpotent derivations in dimension three
    van den Essen, A
    Holtackers, D
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 194 (03) : 273 - 279
  • [10] Quasi-homogeneous Hilbert modules
    Duan, Yongjiang
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 58 (03) : 301 - 314