Ensemble learning with trees and rules: Supervised, semi-supervised, unsupervised

被引:4
|
作者
Akdemir, Deniz [1 ]
Jannink, Jean-Luc [2 ]
机构
[1] Cornell Univ, Ithaca, NY 14850 USA
[2] Cornell Univ, USDA ARS, Ithaca, NY 14853 USA
关键词
Decision trees; ensemble learning; rule ensembles; semi-supervised learning; clustering; VALIDATION;
D O I
10.3233/IDA-140672
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for supervised, semi-supervised and unsupervised learning problems. We show with various examples that for high dimensional regression problems the models constructed by post processing the rules with partial least squares regression have significantly better prediction performance than the ones produced by the random forest or the rulefit algorithms which use equal weights or weights estimated from lasso regression. When rule ensembles are used for semi-supervised and unsupervised learning, the internal and external measures of cluster validity point to high quality groupings.
引用
收藏
页码:857 / 872
页数:16
相关论文
共 50 条
  • [1] Semi-supervised learning with trees
    Kemp, C
    Griffiths, TL
    Stromsten, S
    Tenenbaum, JB
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 257 - 264
  • [2] A SEMI-SUPERVISED ENSEMBLE LEARNING ALGORITHM
    Jiang, Zhen
    Zhang, Shiyong
    2012 IEEE 2ND INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENT SYSTEMS (CCIS) VOLS 1-3, 2012, : 913 - 918
  • [3] Semi-Supervised and Unsupervised Extreme Learning Machines
    Huang, Gao
    Song, Shiji
    Gupta, Jatinder N. D.
    Wu, Cheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (12) : 2405 - 2417
  • [4] Exploiting ensemble method in semi-supervised learning
    Wang, Jiao
    Luo, Si-Wei
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 1104 - +
  • [5] Sharpened graph ensemble for semi-supervised learning
    Choi, Inae
    Park, Kanghee
    Shin, Hyunjung
    INTELLIGENT DATA ANALYSIS, 2013, 17 (03) : 387 - 398
  • [6] When Semi-supervised Learning Meets Ensemble Learning
    Zhou, Zhi-Hua
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2009, 5519 : 529 - 538
  • [7] Semi-supervised ensemble learning based on observational learning
    Yang, Liying
    Zhong, Shanli
    International Journal of Advancements in Computing Technology, 2012, 4 (09) : 298 - 306
  • [8] Semi-supervised Learning with Ensemble Learning and Graph Sharpening
    Choi, Inae
    Shin, Hyunjung
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2008, 2008, 5326 : 172 - 179
  • [9] SEMI-SUPERVISED ENSEMBLE TRACKING
    Liu, Huaping
    Sun, Fuchun
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1645 - +
  • [10] Disfluency Correction using Unsupervised and Semi-supervised Learning
    Saini, Nikhil
    Trivedi, Drumil
    Khare, Shreya
    Dhamecha, Tejas, I
    Jyothi, Preethi
    Bharadwaj, Samarth
    Bhattacharyya, Pushpak
    16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), 2021, : 3421 - 3427