Ultrafast heating and oxygen dissociation in atmospheric pressure air by nanosecond repetitively pulsed discharges

被引:216
|
作者
Rusterholtz, D. L. [1 ,2 ]
Lacoste, D. A. [1 ,2 ]
Stancu, G. D. [1 ,2 ]
Pai, D. Z. [1 ,2 ]
Laux, C. O. [1 ,2 ]
机构
[1] CNRS, UPR Lab EM2C 288, F-92290 Chatenay Malabry, France
[2] Ecole Cent Paris, F-92290 Chatenay Malabry, France
关键词
COLLISIONAL DEACTIVATION; PREMIXED FLAME; PLASMA; NITROGEN; N2; STABILIZATION; DIAGNOSTICS; RELAXATION; TRANSITION; SIMULATION;
D O I
10.1088/0022-3727/46/46/464010
中图分类号
O59 [应用物理学];
学科分类号
摘要
A detailed experimental investigation of the mechanism of ultrafast heating and oxygen dissociation produced by nanosecond repetitively pulsed discharges in atmospheric pressure air preheated at 1000 K is presented. The ultrafast mechanism creates excited electronic states of nitrogen, which then dissociate molecular oxygen through quenching reactions, with the remaining energy dissipated as heat. Optical and electrical diagnostic techniques have been applied to provide a self-consistent set of experimental data for a reference test-case with well-defined discharge and gas conditions. The pulses have a duration of 10 ns, an amplitude of 5.7 kV, a repetition frequency of 10 kHz and the pin-to-pin electrodes are separated by 4 mm. We present measurements of the gas temperature during and after the discharge using optical emission spectroscopy of the second positive system of nitrogen, spatially resolved profiles of the absolute densities of excited electronic states, determined using Abel-inverted spectra of the first and second positive systems of nitrogen, as well as the temporal evolution of the absolute densities of N-2(A), N-2(B), N-2(C), electrons and atomic oxygen. These measurements are synchronized with electrical measurements of pulse current, voltage, and energy. The discharge is found to dissociate about 50% of molecular oxygen and to produce a temperature increase of about 900 K within 20 ns, corresponding to an ultrafast heating rate of about 5 x 10(10) Ks(-1). Comparisons with numerical simulations show good agreement with the measurements and validate the ultrafast mechanism. About 35% of the electric energy deposited into the gas goes into O-2 dissociation, and about 21% into gas heating. Finally, the dissociative quenching rates of N-2(B) and N-2(C) with O-2 at 2200 K were measured and found to be 2.8(+/- 0.6) x 10(-10) cm(3) s(-1) and 5.8(+/- 0.9) x 10(-10) cm(3) s(-1), respectively. Combining these measurements with the literature values at 300 K, we propose a functional temperature dependence in the range 300-2200 K of 3.0 x 10(-10)(T/300)(0.3) cm(3) s(-1) for the C state, and a constant value of 3.0 x 10(-10) cm(3) s(-1) for the B state.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime
    Pai, David Z.
    Lacoste, Deanna A.
    Laux, Christophe O.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2010, 19 (06):
  • [2] Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the glow regime
    Pai, David Z.
    Stancu, Gabi D.
    Lacoste, Deanna A.
    Laux, Christophe O.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2009, 18 (04):
  • [3] Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure
    Pai, David Z.
    Lacoste, Deanna A.
    Laux, Christophe O.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (09)
  • [4] Nanosecond Repetitively Pulsed Dielectric Barrier Discharge in Air at Atmospheric Pressure
    Shao Tao
    Zhang Cheng
    Niu Zheng
    Yu Yang
    Yan Ping
    Zhou Yuanxiang
    PLASMA SCIENCE & TECHNOLOGY, 2011, 13 (05) : 591 - 595
  • [5] Ionization and recombination in nanosecond repetitively pulsed microplasmas in air at atmospheric pressure
    Orriere, Thomas
    Moreau, Eric
    Pai, David Z.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (49)
  • [6] Nanosecond Repetitively Pulsed Dielectric Barrier Discharge in Air at Atmospheric Pressure
    邵涛
    章程
    牛铮
    于洋
    严萍
    周远翔
    Plasma Science and Technology, 2011, 13 (05) : 591 - 595
  • [7] The Structure of Nanosecond Repetitively Pulsed Spark Discharges in Air
    Pai, David Z.
    Cappelli, Mark A.
    Laux, Christophe O.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2258 - 2259
  • [8] Images of nanosecond repetitively pulsed plasmas in preheated air at atmospheric pressure
    Pai, David
    Lacoste, Deanna A.
    Laux, Christophe O.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (04) : 974 - 975
  • [9] Nanosecond Repetitively Pulsed Dielectric Barrier Discharge in Air at Atmospheric Pressure
    邵涛
    章程
    牛铮
    于洋
    严萍
    周远翔
    Plasma Science and Technology, 2011, (05) : 591 - 595
  • [10] Influence of residual charge on repetitively nanosecond pulsed dielectric barrier discharges in atmospheric air
    Liu, Yidi
    Yan, Huijie
    Fan, Zhihui
    Guo, Hongfei
    Ren, Chunsheng
    PHYSICS OF PLASMAS, 2017, 24 (11)