Hydrothermal controlled synthesis of Fe3O4 nanorods/graphene nanocomposite for high-performance lithium ion batteries

被引:26
|
作者
Hu, Aiping [1 ]
Chen, Xiaohua [1 ]
Tang, Qunli [1 ]
Zeng, Bin [2 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Hunan Prov Key Lab Spray Deposit Technol & Applic, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ Arts & Sci, Coll Mech Engn, Changde 415000, Peoples R China
关键词
Composite materials; Energy storage materials; Hydrothermal synthesis; IMPROVED REVERSIBLE CAPACITY; ANODE MATERIAL; NANORODS; GRAPHENE; STORAGE; NANOCRYSTALS; ELECTRODES; NANOSHEETS; GROWTH; CO3O4;
D O I
10.1016/j.ceramint.2014.06.060
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Controllably synthesized Fe3O4 nanorods/graphene nanocomposites (FNGC) with hydrothermal method were characterized by X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N-2 adsorption/desorption isotherms and Raman Spectra. The results illustrated that multicrystal Fe3O4 nanorods with a diameter of about 11 nm and a length of more than 100 nm were uniformly anchored on the surface of graphene sheets. N-2 adsorption/desorption isotherms indicated that FNGC with mesoporous structure of 3-4 nm possessed the specific surface area of 180 m(2)/g. The influences of experiment conditions such as amount of graphite oxide, pH value, hydrothermal condition etc. on the morphologies of Fe3O4 in nanocomposites were investigated. The results indicated that the amount of graphite oxide, pH and static hydrothermal condition played crucial roles in the formation of FNGC. Besides, the relationship between the structure of Fe3O4/graphene nanocomposites and electrochemical properties has been investigated in this work. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:14713 / 14725
页数:13
相关论文
共 50 条
  • [1] Fe3O4/reduced graphene oxide nanocomposite as high performance anode for lithium ion batteries
    Zhang, Mei
    Jia, Mengqiu
    Jin, Yuhong
    APPLIED SURFACE SCIENCE, 2012, 261 : 298 - 305
  • [2] Scalable synthesis of Fe3O4 nanoparticles anchored on graphene as a high-performance anode for lithium ion batteries
    Dong, Yu Cheng
    Ma, Ru Guang
    Hu, Ming Jun
    Cheng, Hua
    Tsang, Chun Kwan
    Yang, Qing Dan
    Li, Yang Yang
    Zapien, Juan Antonio
    JOURNAL OF SOLID STATE CHEMISTRY, 2013, 201 : 330 - 337
  • [3] A facile synthesis of Fe3O4 nanoparticles/graphene for high-performance lithium/sodium-ion batteries
    Fu, Yanqing
    Wei, Qiliang
    Wang, Xianyou
    Zhang, Gaixia
    Shu, Hongbo
    Yang, Xiukang
    Tavares, Ana C.
    Sun, Shuhui
    RSC ADVANCES, 2016, 6 (20) : 16624 - 16633
  • [4] Graphene-Wrapped Fe3O4 Anode Material for High-Performance Lithium Ion Batteries
    Jiang, Yu
    Jiang, Zhong-Jie
    Liu, Meilin
    PROCEEDINGS OF THE 2015 INTERNATIONAL SYMPOSIUM ON MATERIAL, ENERGY AND ENVIRONMENT ENGINEERING (ISM3E 2015), 2016, 46 : 55 - 57
  • [5] Nanorod-structured Fe3O4/Graphene Nanocomposite as High Performance Anode for Lithium-Ion Batteries
    Liu, Yanglin
    Wang, Yaping
    Pan, Anqiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (03): : 2506 - 2519
  • [6] A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells
    Jiang, Yu
    Jiang, Zhong-Jie
    Yang, Lufeng
    Cheng, Shuang
    Liu, Meilin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (22) : 11847 - 11856
  • [7] Structure and electrochemical performance of Fe3O4/graphene nanocomposite as anode material for lithium-ion batteries
    Wang, Gang
    Liu, Ting
    Xie, Xiaoling
    Ren, Zhaoyu
    Bai, Jinbo
    Wang, Hui
    MATERIALS CHEMISTRY AND PHYSICS, 2011, 128 (03) : 336 - 340
  • [8] Fe3O4 wrapped by reduced graphene oxide as a high-performance anode material for lithium-ion batteries
    Bengono, D. A. Mifounde
    Zhang, Bao
    Yao, Yingying
    Tang, Linbo
    Yu, Wanjing
    Zheng, Junchao
    Chu, Dewei
    Li, Jiayi
    Tong, Hui
    IONICS, 2020, 26 (04) : 1695 - 1701
  • [9] Sandwich-structured Fe3O4/Graphene Hybrid Film for High-Performance Lithium-Ion Batteries
    Fang, Hua
    Meng, Fanteng
    Chen, Gaoyun
    Wang, Lixia
    Zhang, Shichao
    Yan, Ji
    Zhang, Linsen
    Zhang, Yongxia
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (08): : 7937 - 7946
  • [10] Fe3O4 wrapped by reduced graphene oxide as a high-performance anode material for lithium-ion batteries
    D. A. Mifounde Bengono
    Bao Zhang
    Yingying Yao
    Linbo Tang
    Wanjing Yu
    Junchao Zheng
    Dewei Chu
    Jiayi Li
    Hui Tong
    Ionics, 2020, 26 : 1695 - 1701