A quantum algorithm for the dihedral hidden subgroup problem based on lattice basis reduction algorithm

被引:8
|
作者
Li, Fada [1 ,2 ]
Bao, Wansu [1 ,2 ]
Fu, Xiangqun [1 ,2 ]
机构
[1] PLA Informat Engn Univ, Zhengzhou 450004, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2014年 / 59卷 / 21期
关键词
Quantum algorithm; Dihedral hidden subgroup problem; Lattice basis reduction algorithm; SUBSET SUM PROBLEMS; FACTORIZATION;
D O I
10.1007/s11434-014-0344-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To optimize the algorithms for the dihedral hidden subgroup problem, we present a new algorithm based on lattice basis reduction algorithm. For n < 120, we reduce the dihedral hidden subgroup problem to shortest vector problem. A subroutine is given to get a transition quantum state by constructing a phase filter function, and then the measurement basis are derived based on the lattice basis reduction algorithm for solving low density subset sum problem. Finally, the parity of slope s is revealed by the measurement. This algorithm needs preparing mn quantum states, m qubits to store and O(n (2)) classical space, which is superior to existing algorithms.
引用
收藏
页码:2552 / 2557
页数:6
相关论文
共 50 条
  • [1] A subexponential-time quantum algorithm for the dihedral hidden subgroup problem
    Kuperberg, G
    SIAM JOURNAL ON COMPUTING, 2005, 35 (01) : 170 - 188
  • [2] The dihedral hidden subgroup problem
    Chen, Imin
    Sun, David
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2024, 18 (01)
  • [3] Quantum Algorithm for Solving the Continuous Hidden Symmetry Subgroup Problem
    Bae, Eunok
    Lee, Soojoon
    IEEE Access, 2021, 9 : 93248 - 93254
  • [4] Quantum Algorithm for Solving the Continuous Hidden Symmetry Subgroup Problem
    Bae, Eunok
    Lee, Soojoon
    IEEE ACCESS, 2021, 9 : 93248 - 93254
  • [5] An efficient quantum algorithm for the hidden subgroup problem in extraspecial groups
    Ivanyos, Gabor
    Sanselme, Luc
    Santha, Miklos
    STACS 2007, PROCEEDINGS, 2007, 4393 : 586 - +
  • [6] Is grover's algorithm a quantum hidden subgroup algorithm?
    Lomonaco, Samuel J., Jr.
    Kauffman, Louis H.
    QUANTUM INFORMATION PROCESSING, 2007, 6 (06) : 461 - 476
  • [7] Is Grover’s Algorithm a Quantum Hidden Subgroup Algorithm?
    Samuel J. Lomonaco
    Louis H. Kauffman
    Quantum Information Processing, 2007, 6 : 461 - 476
  • [8] An Efficient Quantum Algorithm for the Hidden Subgroup Problem in Nil-2 Groups
    Gábor Ivanyos
    Luc Sanselme
    Miklos Santha
    Algorithmica, 2012, 62 : 480 - 498
  • [9] An efficient quantum algorithm for the hidden subgroup problem in nil-2 groups
    Ivanyos, Gabor
    Sanselme, Luc
    Santha, Miklos
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 759 - +
  • [10] An Efficient Quantum Algorithm for the Hidden Subgroup Problem in Nil-2 Groups
    Ivanyos, Gabor
    Sanselme, Luc
    Santha, Miklos
    ALGORITHMICA, 2012, 62 (1-2) : 480 - 498