Dynamics of spiral waves in the complex Ginzburg-Landau equation in bounded domains

被引:5
|
作者
Aguareles, M. [1 ]
Chapman, S. J. [2 ]
Witelski, T. [3 ]
机构
[1] Univ Girona, IMAE, Ed P4,Campus Montilivi, Girona 17003, Spain
[2] Univ Oxford, Math Inst, Andrew Wiles Bldg,ROQ Woodstock Rd, Oxford OX2 6GG, England
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
关键词
Law of motion; Asymptotic; Pattern formation; Nonlinear oscillation; Spiral waves; Complex Ginzburg-Landau equation;
D O I
10.1016/j.physd.2020.132699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multiple-spiral-wave solutions of the general cubic complex Ginzburg-Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter q. We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Drift of spiral waves in complex Ginzburg-Landau equation
    Yang, JZ
    Zhang, M
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 647 - 652
  • [2] Motion of spiral waves in the complex Ginzburg-Landau equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (07) : 348 - 365
  • [3] Drift of Spiral Waves in Complex Ginzburg-Landau Equation
    YANG Jun-Zhong School of Science
    Communications in Theoretical Physics, 2006, 45 (04) : 647 - 652
  • [4] Interaction of Spiral Waves in the Complex Ginzburg-Landau Equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICAL REVIEW LETTERS, 2008, 101 (22)
  • [5] Feedback-controlled dynamics of spiral waves in the complex Ginzburg-Landau equation
    Yuan, Guoyong
    Zhang, Hong
    Wang, Xueli
    Wang, Guangrui
    Chen, Shaoying
    NONLINEAR DYNAMICS, 2017, 90 (04) : 2745 - 2753
  • [7] Resonant Drift of Spiral Waves in the Complex Ginzburg-Landau Equation
    Irina V. Biktasheva
    Yury E. Elkin
    Vadim N. Biktashev
    Journal of Biological Physics, 1999, 25 : 115 - 127
  • [8] Resonant drift of spiral waves in the complex Ginzburg-Landau equation
    Biktasheva, IV
    Elkin, YE
    Biktashev, VN
    JOURNAL OF BIOLOGICAL PHYSICS, 1999, 25 (2-3) : 115 - 128
  • [9] Localized sensitivity of spiral waves in the complex Ginzburg-Landau equation
    Biktasheva, IV
    Elkin, YE
    Biktashev, VN
    PHYSICAL REVIEW E, 1998, 57 (03): : 2656 - 2659
  • [10] Local well-posedness of the complex Ginzburg-Landau equation in bounded domains
    Kuroda, Takanori
    Otani, Mitsuharu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 877 - 894