Adaptive Sparse Tiling for Sparse Matrix Multiplication

被引:85
|
作者
Hong, Changwan [1 ]
Sukumaran-Rajam, Aravind [1 ]
Nisa, Israt [1 ]
Singh, Kunal [1 ]
Sadayappan, P. [1 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Sparse Matrix-matrix Multiplication; Sampled Dense-dense Matrix Multiplication; SpMM; SDDMM; GPU; multicore/manycore; Tiling; VECTOR MULTIPLICATION; SPMV; OPTIMIZATION; PERFORMANCE; PRODUCT; LIBRARY;
D O I
10.1145/3293883.3295712
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Tiling is a key technique for data locality optimization and is widely used in high-performance implementations of dense matrix-matrix multiplication for multicore/manycore CPUs and GPUs. However, the irregular and matrix-dependent data access pattern of sparse matrix multiplication makes it challenging to use tiling to enhance data reuse. In this paper, we devise an adaptive tiling strategy and apply it to enhance the performance of two primitives: SpMM (product of sparse matrix and dense matrix) and SDDMM (sampled dense-dense matrix multiplication). In contrast to studies that have resorted to non-standard sparse-matrix representations to enhance performance, we use the standard Compressed Sparse Row (CSR) representation, within which intra-row reordering is performed to enable adaptive tiling. Experimental evaluation using an extensive set of matrices from the Sparse Suite collection demonstrates significant performance improvement over currently available state-ofthe-art alternatives.
引用
收藏
页码:300 / 314
页数:15
相关论文
共 50 条
  • [1] Adaptive Sparse Matrix-Matrix Multiplication on the GPU
    Winter, Martin
    Mlakar, Daniel
    Zayer, Rhaleb
    Seidel, Hans-Peter
    Steinberger, Markus
    PROCEEDINGS OF THE 24TH SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING (PPOPP '19), 2019, : 68 - 81
  • [2] Sparse matrix multiplication
    Briggs, P
    ACM SIGPLAN NOTICES, 1996, 31 (11) : 33 - 37
  • [3] Adaptive sparse matrix representation for efficient matrix–vector multiplication
    Pantea Zardoshti
    Farshad Khunjush
    Hamid Sarbazi-Azad
    The Journal of Supercomputing, 2016, 72 : 3366 - 3386
  • [4] SPADA: Accelerating Sparse Matrix Multiplication with Adaptive Dataflow
    Li, Zhiyao
    Li, Jiaxiang
    Chen, Taijie
    Niu, Dimin
    Zheng, Hongzhong
    Xie, Yuan
    Gao, Mingyu
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, VOL 2, ASPLOS 2023, 2023, : 747 - 761
  • [5] Adaptive sparse matrix representation for efficient matrix-vector multiplication
    Zardoshti, Pantea
    Khunjush, Farshad
    Sarbazi-Azad, Hamid
    JOURNAL OF SUPERCOMPUTING, 2016, 72 (09): : 3366 - 3386
  • [6] Sparse Matrix Sparse Vector Multiplication - A Novel Approach
    Shah, Monika
    2015 44TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS, 2015, : 67 - 73
  • [7] Coded Sparse Matrix Multiplication
    Wang, Sinong
    Liu, Jiashang
    Shroff, Ness
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [8] Fast Sparse Matrix Multiplication
    Yuster, Raphael
    Zwick, Uri
    ACM TRANSACTIONS ON ALGORITHMS, 2005, 1 (01) : 2 - 13
  • [9] Fast sparse matrix multiplication
    Yuster, R
    Zwick, U
    ALGORITHMS ESA 2004, PROCEEDINGS, 2004, 3221 : 604 - 615
  • [10] HARP: Hardware-Based Pseudo-Tiling for Sparse Matrix Multiplication Accelerator
    Kim, Jinkwon
    Jang, Myeongjae
    Nam, Haejin
    Kim, Soontae
    56TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, MICRO 2023, 2023, : 1148 - 1162