On maximal chains in the non-crossing partition lattice

被引:6
|
作者
Adin, Ron M. [1 ]
Roichman, Yuval [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
Coxeter group; Symmetric group; 0-Hecke algebra; Reduced word; Weak order; Radius; Catalan number; Hurwitz action;
D O I
10.1016/j.jcta.2014.02.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A weak order on the set of maximal chains of the non-crossing partition lattice is introduced and studied. A 0-Hecke algebra action is used to compute the radius of the graph on these chains in which two chains are adjacent if they differ in exactly one element. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 46
页数:29
相关论文
共 50 条
  • [1] A basis for the non-crossing partition lattice top homology
    Eliana Zoque
    [J]. Journal of Algebraic Combinatorics, 2006, 23 : 231 - 242
  • [2] A basis for the non-crossing partition lattice top homology
    Zoque, E
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 23 (03) : 231 - 242
  • [3] Non-crossing frameworks with non-crossing reciprocals
    Orden, D
    Rote, G
    Santos, F
    Servatius, B
    Servatius, H
    Whiteley, W
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 32 (04) : 567 - 600
  • [4] Non-Crossing Frameworks with Non-Crossing Reciprocals
    David Orden
    Günter Rote
    Francisco Santos
    Brigitte Servatius
    Herman Servatius
    Walter Whiteley
    [J]. Discrete & Computational Geometry, 2004, 32 : 567 - 600
  • [5] STATISTICAL MECHANICS OF NON-CROSSING CHAINS .1.
    TEMPERLEY, HNV
    [J]. TRANSACTIONS OF THE FARADAY SOCIETY, 1957, 53 (08): : 1065 - 1073
  • [6] Geometrically constructed bases for homology of non-crossing partition lattices
    Kenny, Aisling
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [7] Temperley-Lieb and non-crossing partition planar algebras
    Kodiyalam, Vijay
    Sunder, V. S.
    [J]. NONCOMMUTATIVE RINGS, GROUP RINGS, DIAGRAM ALGEBRAS AND THEIR APPLICATIONS, 2008, 456 : 61 - 72
  • [8] Non-crossing partition lattices in finite real reflection groups
    Brady, Thomas
    Watt, Colum
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (04) : 1983 - 2005
  • [9] Comparison between the non-crossing and the non-crossing on lines properties
    Campbell, D.
    Pratelli, A.
    Radici, E.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 498 (01)
  • [10] ON THE STATISTICAL-MECHANICS OF NON-CROSSING CHAINS .2.
    TEMPERLEY, HNV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (17): : L843 - L847