Representations and norm estimations for the Moore-Penrose inverse of multiplicative perturbations of matrices

被引:4
|
作者
Zhang, Xiaobo [1 ]
Fang, Xuxu [1 ]
Song, Chuanning [1 ]
Xu, Qingxiang [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2017年 / 65卷 / 03期
基金
中国国家自然科学基金;
关键词
Moore-Penrose inverse; multiplicative perturbation; norm upper bound; BOUNDS;
D O I
10.1080/03081087.2016.1197175
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A multiplicative perturbation of a matrix T is an element of C-mxn has the form ETF* with E is an element of C-mxm and F is an element of C-nxn, which can be expressed alternatively as LET(R-F)*, where T+ is the Moore-Penrose inverse of T, L-E and R-F are introduced as L-E = ETT+ + I-m -TT+, R-F = T+ T-F + I-n -T+ T. In view of the above L-E and R-F, a new type of multiplicative perturbation called weak perturbation is introduced. A formula for (ETF*)+ is derived in the general case that ETF* is a weak perturbation of T. Based on this formula, an upper bound for parallel to(ETF*)(+) -T+parallel to 2 is derived. The sharpness of the obtained upper bound is illustrated by some numerical examples.
引用
收藏
页码:555 / 571
页数:17
相关论文
共 50 条
  • [1] Norm estimations for the Moore-Penrose inverse of multiplicative perturbations of matrices
    Hu, Na
    Luo, Wei
    Song, Chuanning
    Xu, Qingxiang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (01) : 498 - 512
  • [2] UNITARILY INVARIANT NORM AND Q-NORM ESTIMATIONS FOR THE MOORE-PENROSE INVERSE OF MULTIPLICATIVE PERTURBATIONS OF MATRICES
    Luo, Juan
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (03): : 1107 - 1117
  • [3] NORM ESTIMATIONS FOR PERTURBATIONS OF THE WEIGHTED MOORE-PENROSE INVERSE
    Zhang, Xiaobo
    Xu, Qingxiang
    Wei, Yimin
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (01): : 216 - 226
  • [4] Norm estimations for the Moore-Penrose inverse of the weak perturbation of matrices
    Fu, Chunhong
    Song, Chuanning
    Wang, Guorong
    Xu, Qingxiang
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (02): : 215 - 237
  • [5] Perturbations of Moore-Penrose inverse and dual Moore-Penrose generalized inverse
    Cui, Chong
    Wang, Hongxing
    Wei, Yimin
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4163 - 4186
  • [6] Multiplicative perturbations of matrices and the generalized triple reverse order law for the Moore-Penrose inverse
    Xu, Qingxiang
    Song, Chuanning
    Wang, Guorong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 530 : 366 - 383
  • [7] Perturbations of Moore-Penrose inverse and dual Moore-Penrose generalized inverse
    Chong Cui
    Hongxing Wang
    Yimin Wei
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 4163 - 4186
  • [8] On the Moore-Penrose inverse of a sum of matrices
    Baksalary, Oskar Maria
    Sivakumar, K. C.
    Trenkler, Goetz
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (02): : 133 - 149
  • [9] NEW REPRESENTATIONS FOR THE MOORE-PENROSE INVERSE
    Wang, Hongxing
    Wei, Musheng
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 720 - 728
  • [10] Expression for the multiplicative perturbation of the Moore-Penrose inverse
    Deng, Chunyuan
    Liu, Rufang
    Wang, Xiunan
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (06): : 1171 - 1185