An application of codes to attribute-efficient learning

被引:0
|
作者
Hofmeister, T [1 ]
机构
[1] Univ Dortmund, D-44221 Dortmund, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We design asymptotically optimal query strategies for the class of parity functions which contain at most k essential variables. The number of questions asked is at most twice the number asked by an optimal strategy. The strategy presented is even non-adaptive. For fixed k, the number of questions is optimal up to additive constants. Our results improve upon results by Uehara, Tsuchida and Wegener [6].
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条