Galois sections for abelianized fundamental groups

被引:13
|
作者
Harari, David [1 ]
Szamuely, Tamas [2 ]
机构
[1] Univ Paris Sud Math, F-91405 Orsay, France
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
关键词
BRAUER-MANIN OBSTRUCTION; ELEMENTARY OBSTRUCTION; RATIONAL-POINTS; CURVES; VARIETIES; FIELDS; CONJECTURE; EXISTENCE;
D O I
10.1007/s00208-008-0327-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a smooth projective curve X of genus at least 2 over a number field k, Grothendieck's Section Conjecture predicts that the canonical projection from the ,tale fundamental group of X onto the absolute Galois group of k has a section if and only if the curve has a rational point. We show that there exist curves where the above map has a section over each completion of k but not over k. In the appendix Victor Flynn gives explicit examples in genus 2. Our result is a consequence of a more general investigation of the existence of sections for the projection of the ,tale fundamental group 'with abelianized geometric part' onto the Galois group. We also point out the relation to the elementary obstruction of Colliot-Th,lSne and Sansuc.
引用
收藏
页码:779 / 800
页数:22
相关论文
共 50 条
  • [1] Galois sections for abelianized fundamental groups
    David Harari
    Tamás Szamuely
    [J]. Mathematische Annalen, 2009, 344 : 779 - 800
  • [2] FUNDAMENTAL GROUPS OF GALOIS CLOSURES OF GENERIC PROJECTIONS
    Liedtke, Christian
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (04) : 2167 - 2188
  • [3] Lie algebras of Galois representations on fundamental groups
    Wojtkowiak, Zdzislaw
    [J]. GALOIS-TEICHMUELLER THEORY AND ARITHMETIC GEOMETRY, 2012, 63 : 601 - 627
  • [4] Reconstructing global fields from dynamics in the abelianized Galois group
    Cornelissen, Gunther
    Li, Xin
    Marcolli, Matilde
    Smit, Harry
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (02):
  • [5] Prime to p fundamental groups, and tame Galois actions
    Kisin, M
    [J]. ANNALES DE L INSTITUT FOURIER, 2000, 50 (04) : 1099 - +
  • [6] On the Fundamental Groups of Galois Covering Spaces of the Projective Plane
    Makoto Namba
    Hiroyasu Tsuchihashi
    [J]. Geometriae Dedicata, 2004, 105 : 85 - 105
  • [7] Fundamental groups of Galois covers of degree 5 surfaces
    Amram, Meirav
    Gong, Cheng
    Teicher, Mina
    Xu, Wan-Yuan
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (04) : 1517 - 1542
  • [8] On the Fundamental Groups of Galois Covering Spaces of the Projective Plane
    Makoto Namba
    Hiroyasu Tsuchihashi
    [J]. Geometriae Dedicata, 2004, 104 : 97 - 117
  • [9] On the fundamental groups of Galois covering spaces of the projective plane
    Namba, M
    Tsuchihashi, H
    [J]. GEOMETRIAE DEDICATA, 2004, 104 (01) : 97 - 117
  • [10] On the fundamental groups of Galois covering spaces of the projective plane
    Namba, M
    Tsuchihashi, H
    [J]. GEOMETRIAE DEDICATA, 2004, 105 (01) : 85 - 105