Recursive impedance inversion of ground-penetrating radar data in stochastic media

被引:15
|
作者
Zeng Zhao-Fa [1 ]
Xiong, Chen [1 ]
Jing, Li [1 ,2 ]
Chen Ling-Na [1 ]
Qi, Lu [1 ]
Liu Feng-Shan [2 ]
机构
[1] Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun 130026, Peoples R China
[2] Delaware State Univ, Appl Math Res Ctr, Dover, DE 19901 USA
基金
中国国家自然科学基金;
关键词
Ground-penetrating radar; impedance inversion; tapering function; stochastic medium; SIMULATION; LAYERS; MODEL;
D O I
10.1007/s11770-015-0514-0
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.
引用
收藏
页码:615 / 625
页数:11
相关论文
共 50 条
  • [1] Recursive impedance inversion of ground-penetrating radar data in stochastic media
    Zhao-Fa Zeng
    Xiong Chen
    Jing Li
    Ling-Na Chen
    Qi Lu
    Feng-Shan Liu
    [J]. Applied Geophysics, 2015, 12 : 615 - 625
  • [2] Conditional stochastic inversion of common-offset ground-penetrating radar reflection data
    Xu, Zhiwei
    Irving, James
    Liu, Yu
    Zhu, Peimin
    Holliger, Klaus
    [J]. GEOPHYSICS, 2021, 86 (05) : WB89 - WB99
  • [3] Remigration of ground-penetrating radar data
    Jaya, MS
    Botelho, MA
    Hubral, P
    Liebhardt, G
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 1999, 41 (01) : 19 - 30
  • [4] Inversion of ground-penetrating radar data for 2D electric parameters
    Wang Zhao-Lei
    Zhou Hui
    Li Guo-Fa
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2007, 50 (03): : 897 - 904
  • [5] GROUND-PENETRATING RADAR
    OWEN, TE
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 1995, 33 (1-3) : 5 - 6
  • [6] Efficient Deconvolution of Ground-Penetrating Radar Data
    Schmelzbach, Cedric
    Huber, Emanuel
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (09): : 5209 - 5217
  • [7] A method for interpretation of ground-penetrating radar data
    Yufryakov, BA
    Surikov, BS
    Sosulin, YG
    Linnikov, ON
    [J]. JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2004, 49 (12) : 1342 - 1356
  • [8] Modeling of crosshole ground-penetrating radar data
    Balkaya, Caglayan
    Gokturkler, Gokhan
    [J]. PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2016, 22 (06): : 581 - 596
  • [9] Diffraction imaging of ground-penetrating radar data
    Yuan, Hemin
    Montazeri, Mahboubeh
    Looms, Majken C.
    Nielsen, Lars
    [J]. GEOPHYSICS, 2019, 84 (03) : H1 - H12
  • [10] Ground-penetrating radar: Analysis of point diffractors for modeling and inversion
    Saintenoy, AC
    Tarantola, A
    [J]. GEOPHYSICS, 2001, 66 (02) : 540 - 550